在许多科学的学科和应用中(例如人工智能和运营研究)中,对硬优化问题进行采样一组高质量的解决方案具有很大的实践相关性。主要的开放问题之一是基于蒙特卡洛技术的典型随机求解器缺乏恐怖性或模式崩溃,导致概括或缺乏对不确定性的鲁棒性。当前,尚无通用度量标准来量化各种求解器的性能缺陷。在这里,我们引入了一种新的多样性度量,用于量化NP-HARD优化问题的独立近似解决方案的数量。除其他外,它允许通过所需的多样性(TTD)进行基准测试求解器的性能,这是经常使用的时间到达(TTS)的概括。我们通过比较各种量子退火策略的采样能力来说明该指标。特别是,我们表明,不均匀的量子退火时间表可以通过控制时空分离的临界界面来重新分配和抑制拓扑缺陷的出现,从而使相对于TTS和TTD都具有优势,从而使得与标准量子退火计划相比,与TTD相对于TTD,以寻找稀有解决方案。使用路径综合蒙特卡洛模拟可用于多达1600吨,我们证明,在有效的近似张量张量网络收缩的指导下,量子波动的量子驱动驱动可以显着减少与本地场随机挫败的2D旋转镜的硬性局部性的比例。具体来说,我们观察到,通过创建一类算法量子相变,可以通过减少25%以上的难度样本实例的比例来增强溶液的多样性。
主要关键词