“你能感受到痛苦的痛苦吗?” 2005 年 12 月 17 日 https://www.nt ticc.or.jp/ja/hive/artist-talk/ 20051217 /
第1部分动物心理学的一般理论第1章动物心理学的历史第2章动物心理学对象第3章研究方法第4章刺激和感官第5章工具感官第6章第6章VISION第6章VISION第7章化学感官第8章《时间感知》第8章中的学习方法第1章第1章第1章使用动物学习研究的方法和设备2动物学习研究3生理学的意义。第5章学习的外部因素第6章学习的内部因素第7章分布实践和第8章过渡和干涉第9章学习曲线第10章学习部分
感谢您选择台达多功能 VFD-EL 系列。VFD-EL 系列采用高品质组件和材料制造,并结合了最新的微处理器技术。本手册用于交流电机驱动器的安装、参数设置、故障排除和日常维护。为保证设备安全运行,在将电源连接到交流电机驱动器之前,请阅读以下安全指南。请保留此操作手册并分发给所有用户以供参考。为确保操作员和设备的安全,只有熟悉交流电机驱动器的合格人员才能进行安装、启动和维护。在使用 VFD-EL 系列交流电机驱动器之前,请务必仔细阅读本手册,尤其是“警告”、“危险”和“小心”说明。未遵守规定可能会导致人身伤害和设备损坏。如果您有任何疑问,请联系您的经销商。请在安装前阅读安全须知。
1 3p-Medicine实验室,Gda´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´nsk,波兰; wiktoria.stankowska@gumed.edu.pl(W.S.); katarzyna.duzowska@gumed.edu.pl(K.D.); marcin.jakalski@gumed.edu.pl(M.J.); magdalena.wojcik@gumed.edu.pl(m.w.-z。); kinga.drezek-chyla@gumed.edu.pl(k.d.-c.); arkadiusz.piotrowski@gumed.edu.pl(A.P.)2乌普萨拉大学的免疫,遗传学与病理学和科学系,BMC,Husargatan 3,751 08 Uppsala,瑞典; daniil.sarkisyan@igp.uu.se(D.S.); bozena.bruhn-olszewska@igp.uu.se(b.b.-o.); hanna.davies@igp.uu.se(H.D.)3 GDA´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´NSK,波兰; michal.bienkowski@gumed.edu.pl(m.b。 ); rafal.peksa@gumed.edu.pl(R.P. ); wojciech.biernat@gumed.edu.pl(W.B.) 4肿瘤病理学系,玛丽亚·斯克洛德斯卡(MariaSkłodowska)国家肿瘤学研究所,加恩卡斯卡(Garncarska)11,31-115 krak rand; agnieszka.harazin@krakow.nio.gov.pl(A.H.-L。); marcin.przewoznik@krakow.nio.gov.pl(M.P. ); Michael.hultstrom@mcb.uu.se(M.H. ); robert.frithiof@uu.se(r.f.) ); Jan.dumanski@igp.uu.se(J.P.D.) †这些作者为这项工作做出了同样的贡献。 ‡这些作者对这项工作也同样贡献。3 GDA´nsk医科大学,M。Sklodowskiej-Curie 3A,80-210 GDA´NSK,波兰; michal.bienkowski@gumed.edu.pl(m.b。); rafal.peksa@gumed.edu.pl(R.P.); wojciech.biernat@gumed.edu.pl(W.B.)4肿瘤病理学系,玛丽亚·斯克洛德斯卡(MariaSkłodowska)国家肿瘤学研究所,加恩卡斯卡(Garncarska)11,31-115 krak rand; agnieszka.harazin@krakow.nio.gov.pl(A.H.-L。); marcin.przewoznik@krakow.nio.gov.pl(M.P.); Michael.hultstrom@mcb.uu.se(M.H.); robert.frithiof@uu.se(r.f.)); Jan.dumanski@igp.uu.se(J.P.D.)†这些作者为这项工作做出了同样的贡献。‡这些作者对这项工作也同样贡献。); agnieszka.adamczyk@onkologia.krakow.pl(a.a.); janusz.rys@krakow.nio.gov.pl(J.R.)5泌尿外科和肿瘤学诊所,波兰Piechowskiego的Ko´scierzyna专科医院karsas@o2.pl 6 piechowskiego的Ko´scierzyna专科医院一般和肿瘤外科诊所,波兰,83-400 Ko´scierzyna; wojmakar@wp.pl 7 Gda´nsk医科大学泌尿外科系和诊所M. Sklodowskiej-curie 3A,80-210 GDA´nsk,波兰; marcin.matuszewski@gumed.edu.edu.pl 8人畜共科科学中心,乌普萨拉大学医学科学系,阿卡德米斯卡·舒克胡斯(Akademiska Sjukhuset),瑞典751 85乌普萨拉(751 85); josef.jarhult@medsci.uu.se 9外科科学系,麻醉学和重症监护室,乌普萨拉大学,Akademiska Sjukhuset,751 85 Uppsala,瑞典; miklos.lipcsey@uu.se(M.L。10 Hedenstierna实验室,Uppsala大学外科科学系,Akademiska sjukhuset,751 85 Uppsala,瑞典11综合生理学,医学细胞生物学系,Uppsala大学,Uppsala大学,Uppsala大学,BMC,Husargatan 3,Husargatan 3,751 08 Uppsala,uppsala,uppsala,uppsala,sweden uppsala,sweden upean sweden of sweden utia, Skłodowska-Curie国家肿瘤学研究所,Garncarska 11,31-115 KrakÓW,波兰; jtjmed@interia.pl 13哈佛医学院遗传学系,美国马萨诸塞州波士顿大街77号,美国马萨诸塞州02115; giulio@broadinstitute.org 14生物学和药物植物学系GDA´nsk,Hallera,Hallera 107,80-416 GDA´nsk,波兰 *通信:
摘要:智能防护服的开发将有助于检测接触体育,交通碰撞和其他事故的伤害。ECOFLEX,间隔织物和基于石墨烯的气凝胶的组合提供了多功能复合材料。在应变范围为40〜55%的应变敏感性,压力灵敏度为0.125 kpa -1在0〜15 kPa的压力敏感性,温度灵敏度为-0.648°C -1。进行50次撞击测试后,其保护系数仅从60%下降到55%。此外,它显示了热绝缘性能。有限元数值模拟分析的压缩和影响过程结果与实验结果非常吻合。ECOFLEX/AIRGEL/SPACER织物传感器表现出简单的结构,较大的压力应变,高灵敏度,柔韧性和易于制造,使其成为抗击负荷的智能保护服装的候选者。
在神经科学中,对织物皮肤相互作用期间感觉知觉的精确评估仍然很少。本研究旨在通过脑电图(EEG)光谱强度研究对织物刺激的皮质感觉反应,并评估EEG频带,传统的主观问题汇总和材料的物理特性之间的关系。招募了十二名健康的成年参与者,以测试三种具有不同纺织品组成的织物1)棉花,2)尼龙和3)聚酯和羊毛。通过织物触摸测试仪(FTT)定量评估织物的物理特性。邀请受试者通过主观问卷和客观的脑电图记录来评估织物样品的感觉知觉。响应于不同的织物刺激而获得了theta和伽马条带的脑电图和伽马条带的显着差异(p <0.05)。theta和伽马力表现出与问卷评估的大多数主观感觉和FTT织物的物理特性(p <0.05)的相关性。EEG光谱分析可以用于歧视不同纺织品组成的织物刺激,因此表明织物刺激过程中的感觉感知。这一发现可能为通过EEG光谱分析提供进一步探索感知感知的证据,这可以应用于对未来假体中皮肤触觉的脑发生者的研究以及对行业中感觉知觉的自动检测。
摘要 目的 人们投入了大量资源,通过提供非自然形式的体感反馈来增强假肢的控制和可用性。在本文中,我们研究了远程控制假肢的身体部位的内在体感信息是否可以被运动系统利用来支持控制和技能学习。 方法 在安慰剂对照设计中,我们使用局部麻醉来减弱大脚趾的体感输入,同时参与者学习通过压力传感器操作脚趾控制的手动佩戴的机器人额外手指。将运动学习结果与接受假麻醉的对照组进行比较,并在三种不同的任务场景中进行量化:与生物手指隔离操作、同步协调操作和协作操作。 主要结果 两组都能够学会操作机器人额外手指,大概是因为视觉反馈和其他相关的感官提示非常丰富。重要的是,远端身体控制器提供的位移体感提示有助于获得独立的机器人手指运动、保持和转移同步手部机器人协调技能以及在认知负荷下的表现。当任务涉及与生物手指的密切协作时,脚趾麻醉不会损害运动表现,这表明运动系统可以通过动态整合来自多个甚至远端身体部位的任务内在体感信号来弥补感觉反馈差距。意义总之,我们的研究结果表明,除了人工刺激之外,还有多种自然途径可以提供内在替代体感信息来支持对人造身体部位的运动控制。
前言................................................................................................................................................ xvii
黄怀志 1 、Ronan E. Couch 1 、Rachid Karam 2 、胡春玲 1 、Nicholas Boddicker 3 、Eric C. Polley 4 、娜洁 3 、Christine B. Ambrosone 5 、姚宋 5 、Amy Trentham-Dietz 6 、A. Heather Eliassen 7 、Kathryn Penney 7 、Kristen Brantley 7 、Clara Bodelon 8 、Lauren R. Teras 8 、James Hodge 8 、Alpa Patel 8 、Christopher A. Haiman 9 、Esther M. John 10 、Susan L. Neuhausen 11 、Elena Martinez 12 、James V. Lacey 11 、Katie M. O'Brien 13 、Dale P. Sandler 13 、Clarice R. Weinberg 13 、Julie R. Palmer 14、Kimberly A. Bertrand 14、Celine M. Vachon 3、Janet E. Olson 3、Kathryn E. Ruddy 15、Hoda Anton-Culver 16、Argyrios Ziogas 16、David E. Goldgar 17、Katherine L. Nathanson 18、Susan M. Domchek 18、Jeffrey N. Weitzel 19 、Peter Kraft 20 、Jill S. Dolinsky 2 、Tina Pesaran 2 、Marcy E. Richardson 2 、Siddhartha Yadav 1 和 Fergus J. Couch 1,3