抽象的人群物种,尤其是trichocarpa,长期以来一直是基因组研究的模型树,这是由于完全测序的基因组。然而,高杂合性和重复区域的存在,包括丝粒和核糖体RNA基因簇,剩下了59个未解决的间隙,占三分法P. trichocarpa基因组的3.32%。在这项研究中,改进了愈伤组织诱导方法,以从P. ussuriensis花药中得出双倍的单倍体(DH)愈伤组织。利用长阅读测序,我们成功地组装了一个几乎没有间隙的,端粒到telomere(T2T)P。ussuriensis基因组,跨越了412.13 MB。该基因组组件仅包含7个间隙,其重叠n50长度为19.50 MB。注释显示该基因组中有34,953个蛋白质编码基因,比trichocarpa多465个。值得注意的是,中心区域的特征是高阶重复序列,我们在所有DH基因组染色体中鉴定了和注释的中心粒区域,这是杨树的第一个。衍生的DH基因组表现出与毛thocarpa的高共线性,并显着填补了后者基因组中存在的空白。此T2T P. ussuriensis参考基因组不仅会增强我们对基因组结构的理解,并在杨树属内的功能增强了我们的功能,而且还为杨树基因组和进化研究提供了宝贵的资源。
摘要。我们先前研究中产生的长期无缘高分辨率空气污染物(LGHAP)浓度数据集提供了空间连续的每日气溶胶光学深度(AOD)和细节颗粒物(PM 2。5)自2000年以来,中国1公里的网格分辨率的浓度。这一进步赋予了对区域气溶胶变化的前所未有的评估及其对过去20年中环境,健康和气候的影响。但是,有必要增强这种高质量的AOD和PM 2。5浓度数据集具有新的可靠功能和扩展的空间覆盖范围。在这项研究中,我们介绍了全球尺度LGHAP数据集(LGHAP V2)的版本2,该版本是通过使用多功能数据科学,模式识别和机器学习方法的无缝集成的改进的Big Earth Data Analytics生成的。特定的,从相关卫星,地面监测站获得的多模式AOD和空气质量测量值通过利用基于随机的数据驱动模型的能力来协调。随后,开发了改进的基于张量流的AOD重建算法,以编织统一的多源AOD产品共同填充数据差距,以填补大气孔校正(MAIAIA)AOD AOD AOD从Terra的多角度实现。消融实验的结果表明,在收敛速度和数据准确性方面,基于张量的间隙填充方法的改进性能更好。for pm 2。5浓度测量。 验证结果表明无间隙PM 2。 55浓度测量。验证结果表明无间隙PM 2。5Ground-based validation results indicated good data accuracy of this global gap-free AOD dataset, with a correlation coefficient ( R ) of 0.85 and a root mean square error (RMSE) of 0.14 compared to the worldwide AOD observations from the AErosol RObotic NETwork (AERONET), outperforming the purely re- constructed AODs ( R = 0.83, RMSE = 0.15), but they were比原始的Maiac AOD检索稍差(r = 0.88,RMSE = 0.11)。5浓度映射,一种新颖的深度学习方法,称为场景意识到的集合学习图表网络(SCAGAT)。在考虑到跨区域的数据驱动模型的场景代表性时,SCAGAT算法在空间外推时进行了更好的表现,在很大程度上降低了对有限和/甚至不存在原位PM 2的区域的建模偏差。5浓度估计值具有更高的预测精度,与PM 2相比,R为0.95,RMSE为5.7 µg m-3。
二维半导体 - 螺旋体异质结构构成了许多纳米级物理系统的基础。但是,测量此类异质结构的性质并表征半导体原位是具有挑战性的。[1]最近的一项实验研究能够使用超流体密度的微波测量值探测杂质内的半导体。这项工作表明,由平面磁场引起的半导体中超流体密度的迅速耗竭,在存在自旋轨道耦合的情况下,这会产生所谓的Bogoliubov Fermi Sur- sus。实验工作使用了一个简化的理论模型,该模型忽略了半导体中非磁性疾病的存在,因此仅在定性上描述数据。是由实验激励的,我们引入了一个理论模型,该模型描述了一个具有强旋转轨道耦合的无序半导体,该模型由超级导体邻近。我们的模型为状态密度和超流体密度提供了特定的预测。存在疾病的存在导致无间隙超导阶段的出现,这可能被视为Bogoliubov Fermi表面的表现。应用于真实的实验数据时,我们的模型显示出了出色的定量一致性,并在考虑到磁场的轨道贡献后,提取了材料参数(如平均自由路径和迁移率),以及e ef the g-tensor。我们的模型可用于探测其他超导体 - 症状导体异质结构的原位参数,并可以进一步扩展以访问运输特性。
Lamiaceae家族的成员Baicalaria Baicalensis Georgi是一家广泛使用的药用植物。从黄葡萄球菌中提取的黄酮促成了许多健康益处,包括抗炎,抗病毒和抗肿瘤活性。但是,不完全的基因组组装阻碍了对黄链树的生物学研究。这项研究通过PACBIO HIFI,纳米孔超长和HI-C技术的整合,提出了第一台端粒到核(T2T)间隙 - 无链球菌的基因组组装。获得了384.59 MB的基因组大小,其重叠群N50为42.44 MB,所有序列均固定在没有任何间隙或不匹配的9个假色体中。此外,我们使用广泛靶向的代谢组方法分析了与蓝紫花花的测定有关的主要氰化素和delphinidin的花青素。基于整个基因组的鉴定(CYP450)基因家族,三个基因(SBFBH1、2和5)编码类黄酮3'-羟基酶(F3'HS)(F3'HS)和一个基因(SBFBH7)(SBFBH7)(SBFBH7)(SBFBH7)编码F3'''''''''''''''''''''''''''''''''''''''''''''' - 羟基化类黄酮的B环。我们的研究丰富了可用于Lamiaceae家族的基因组信息,并提供了一种用于发现类黄酮装饰涉及的CYP450基因的工具包。
全基因组测序和组装彻底改变了植物遗传学和分子生物学。然而,第一代和第二代技术的显着缺点导致了不完善的参考基因组:高质量或不确定的序列的大量和较大的差距高度重复性DNA的领域以及有限的染色体相限制,研究人员限制了研究人员表征最近期犯罪事件的调节性非编码元素和谱系区域的能力。最近,长阅读测序的进步导致了植物基因组的第一个无间隙,端粒到端粒(T2T)组件。这种飞跃有可能提高基因组学和分子实验的速度和信心,同时降低研究界的成本。