描述性叙事性心脏骤停(SCA)是冠状动脉疾病患者中最常见的死亡原因。当一个人的心律进入一个称为心室纤颤的不协调的电活动时,心脏会抽搐,无法有效地抽血。当患者的心脏似乎停止跳动时,这种情况通常伴随着严重的心脏病发作。除颤器通过给心脏受控的电击来起作用,希望将其扭动回常规节奏。植入式心脏逆转除颤器(ICD)已被证明有效地降低了SCA幸存者的死亡率和记录的恶性心室心律不齐的患者。最近,通过报告降低患有心室心律失常风险的患者的死亡率(例如先前心肌梗塞(MI)和射血分数降低的患者)的死亡率降低,可以扩大ICD的使用。ICD由心脏中的可植入铅组成,这些导线连接到胸部或腹部皮肤下方植入的脉搏发生器。ICD放置是一种较小的外科手术程序,将ICD设备放置在胸壁上的皮肤下方,并经par固型心脏铅。ICD放置的潜在不利影响是出血,感染,气胸以及不必要的反击的传递。可穿戴的心脏逆变器纤维纤维器是一种外部设备,旨在执行与ICD相同的任务,而无需侵入性过程。它由一个背心组成,该背心在患者的衣服下面不断磨损。该背心的一部分是包含心脏监测电极的“电极带”,以及带来反震的治疗电极。背心连接到带有电池组和警报模块的显示器,该电池组戴在患者皮带上。监视器包含解释心律的电子设备,并确定何时需要反击。警报模块通过灯光或语音消息提醒患者对某些情况,在此期间,有意识的患者可以中止或延迟冲击。
基于威胁强度,接近性和肯定的上下文以及学习预测危险刺激的抽象防御行为会发生变化,这对于生存至关重要。然而,大多数帕夫洛维亚恐惧调节范式仅着眼于冻结行为,掩盖了协会性和非缔合性机制对动态防御反应的贡献。为了彻底研究防御性伦理图,我们将男性和雌性成人C57BL/6 J小鼠进行了pavlovian条件的范式,该范式将脚震与包含串行的化合物刺激(SCS)组成,该刺激(SCS)由独特的音调和白噪声(WN)刺激周期组成。为了研究联想和非缔合性机制如何影响防御反应,我们将这个配对的SCS-footshock组与四个对照组进行了比较,这些对照组由伪和伪造的scs和footshock和footshock,Hock Shock,Hock Shock,或反向SCS的表现与倒置的Tone-WN顺序与成对的呈现或不属性的表现进行调节。在调节的第2天,配对组在音调期间表现出强大的冻结,并在WN期间切换到爆炸性跳跃和飞镖行为。相对,未配对和反向SCS组表达了较少的音调引起的冻结,并且在WN期间很少表现出跳跃或飞镖。在调节第二天后,我们观察到防御行为在两个灭绝会议上的变化如何变化。在灭绝期间,配对组的音调诱导的冻结减少,小鼠从WN期间迅速转移到冰点和飞镖的组合。未配对的,未配对的反向和震惊 - 只有小组在SCS期间表现出防御性的尾巴嘎嘎声和飞镖,冰冻和跳跃最少。有趣的是,配对的反向组没有跳到WN,而音调诱发的冻结具有抵抗力的灭绝。这些发现表明,非缔合性因素促进了一些防御响应,但是强大的提示诱导的冻结和高强度飞行表达需要联想因素。
面对世界某些地区始终存在的地震威胁,建造能够抵御地震的建筑物已成为当务之急。抗震建筑展代表了建筑和工程创新的巅峰。这些展品生动地展示了先进材料、尖端结构设计和精心规划的和谐融合,所有这些都旨在最大限度地减少地震活动对建筑物的潜在破坏性影响,更重要的是,最大限度地保护建筑物内人员的安全。在地震带,地球板块汇聚的地方,传统的建筑设计往往容易受到地震期间释放的不可预测的力量的影响。然而,抗震建筑展证明了建筑师和工程师致力于创造不仅能承受地面无情震动,还能为里面的人提供避难所的建筑。这些展品不仅优先考虑生存所必需的结构坚固性,还采用了突破传统建筑界限的最先进的技术和方法。本介绍深入探讨了抗震建筑展示的多方面,探索了这些结构抵御地震强大力量的巧妙机制和设计原则。从基础隔离到阻尼系统,每个元素都发挥着至关重要的作用,将建筑转变为坚韧的堡垒,能够面对自然界最艰巨的挑战而屹立不倒。抗震建筑展示不仅仅是建筑实力的展示;它承诺保护生命,维护建筑环境的完整性,因为在这些地区,我们脚下的地面是一种动态且不断变化的力量。在随后的探索中,我们将剖析使这些展示成为抗震典范的功能机制和策略,说明它们如何重新定义结构工程领域的可能性边界。功能机制抗震建筑利用各种功能机制和工程策略来最大限度地减少地震力的影响。以下是抗震建筑展示中涉及的一些关键机制的分解:a.基础隔震: 功能:在地震期间将建筑物与地面运动分离。 机制:建筑物依靠柔性轴承或隔离器,使其能够独立于地面运动移动。
关键字:通量角,蒸发,步骤覆盖,形成膜增长抽象典型蒸发过程始于10e-7 Torr范围。在这种高真空状态下,由于较长的平均自由路径,蒸发过程具有视线特征。设计用于升降机过程的蒸发器采用晶圆圆顶,其球形半径与源位置相匹配。与产生逆行角或底切轮廓的光刻过程相结合,该组合可以使清洁的金属升降机脱离。但是,相同的视线属性促进了金属提升的效果,从而导致了非保形步骤覆盖范围。使用常规的蒸发方法,共形步骤覆盖范围会导致升空难度。在这项工作中,我们将讨论雷神RFC最近开发的技术,该技术与标准升降机蒸发器相比提供了单向步骤覆盖优势。通过使用振荡晶圆运动,蒸发通量可以达到通常因膜增长而遮蔽的特征,从而改善台阶覆盖范围。此方法适用于希望在一个方向上的共形覆盖范围的应用。i ntrodruction金属化是通过大量蒸发的,然后是升降机以去除不需要的金属。电子束蒸发是一个简单有效的金属化过程。由于该过程通常在高真空下开始,因此涂层由于较长的平均自由路径而具有视线属性。不足的逆行角将在光震托上产生薄薄的金属层。产生逆行角度或产生垂直轮廓的双层过程的图像逆转照片过程将导致金属薄膜覆盖范围的不连续性,从而使清洁升降机可行。升空后,多余的金属将变成诸如纵梁,机翼或襟翼之类的缺陷。不幸的是,有益于提升过程的质量对于阶跃覆盖范围并不是最佳的。图1显示了一个金属层在另一个金属层上的阶梯覆盖的示例,该金属层由介电膜分开。
摘要 散发性克雅氏病 (sCJD) 是一种传染性脑蛋白病。目前主要有五种临床病理亚型 (sCJD-MM(V)1、-MM(V)2C、-MV2K、-VV1 和 -VV2)。组织病理学证据表明,朊病毒聚集体和海绵状病变的定位因亚型而异。确定是否存在可检测成像异常的初始部位(震中)以及病变扩散的顺序将有助于疾病的早期诊断、患者分期、管理和临床试验招募。扩散磁共振成像 (MRI) 是检测海绵状变性最常用和最敏感的测试。本研究旨在使用弥散加权图像 (DWI) 在已知最大的经尸检证实的 sCJD 患者横断面数据集中首次在体内识别脑内亚型依赖性震中和病变传播。我们使用基于事件的建模(一种成熟的数据驱动技术)通过横断面 DWI 估计病变传播。1 名不知诊断的神经放射科医生对 594 名经尸检诊断的受试者(448 名 sCJD 患者)的 12 个大脑区域的 DWI 异常进行评分。我们使用基于事件的模型重建了五种纯亚型中病变传播的顺序。151 名患者的随访数据验证了估计的序列。结果表明,病变传播的中心和顺序是亚型特异性的。两种最常见的亚型(-MM1 和 -VV2)显示出相反的 DWI 异常出现顺序:分别从新皮质到皮质下区域,反之亦然。楔前叶也是 -MM2 和 -VV1 中最有可能的中心,尽管与 -MM1 不同,在扣带回和岛叶皮质中也检测到了早期异常信号。-MV2K 中复制了表征 -VV2 的病变传播尾部-喙部序列。这些数据驱动模型结合起来,提供了前所未有的动态洞察,可以洞察病理过程开始和传播时亚型特异性中心,这也可能增强早期诊断并实现 sCJD 的疾病分期。
土星五号火箭可能已经消失,但它永远不会被遗忘。毕竟,它是将人类送上月球表面的唯一火箭。谈到土星五号,“强大”一词是轻描淡写。当那五个巨大的 F1 发动机点火并将巨大的火箭从发射台上推下时,它以地震般的猛烈震动了地面。充其量,你可能会说这是一次受控爆炸。如果一个人不幸在距离发射台一英里以内,声波可以轻易粉碎他的骨骼。即使在更远的距离,声波也感觉像有人用拳头捶打你的胸口。火焰如此明亮,很难不眯着眼睛看。在晚上,它照亮了天空,如此明亮,你可以轻松地阅读报纸上的小字——距离发射场五十英里。我和许多在火箭上工作的工程师和技术人员交谈过。对人们来说,他们都将土星五号的发射描述为“盛事”。他们说,没有什么能比得上它。它是如此巨大和强大,甚至连航天飞机的发射都相形见绌。对于那些亲眼目睹它的人来说,发射被描述为一种宗教体验。它就像闪电、雷声、地震、雪崩、火车迎面相撞和全身抽搐的综合感觉,都集中在两分钟内。但对他们来说,它已经深深地刻在了他们的记忆中,似乎持续了一千年。今天活着的火箭专家中,只有少数幸运的人能够亲眼目睹土星五号升空进入太空的事件。但现在,有了新的超大尺寸的 Apogee 土星五号套件,您可以拥有人类最伟大的太空冒险的遗物。您可以真正感受到成为这一体验的一部分的感觉。Apogee 土星五号不仅仅是太空纪念品。当你看到这枚新火箭时,你会惊叹于它的大小和威严的气势。你的眼睛会紧盯着它,就像它对你施了某种催眠术一样。它需要你的注意,就像海军陆战队教官在你面前咆哮一样。看到它后,你会重温太空计划的辉煌岁月,以及因这项成就而涌现的自豪感
本信息征询书旨在收集高超音速武器系统吸气式发动机供应商基地的国内生产能力和产能信息。吸气式发动机可使武器射程更远,并将更多有效载荷投向目标。这些发动机系统包括冲压发动机、超燃冲压发动机、联合循环发动机、空气增强火箭和旋转爆震发动机。在发射这些系统之一的过程中,火箭助推器或常规发动机将飞行器加速到至少超音速,然后切换到高超音速推进能力,以高马赫数和高 g 载荷飞向目标。这种飞行状态会在系统中产生巨大的热、机械和声学应力。武器在其大部分任务过程中都会经历这些应力,而传统战略导弹只会在其弹道的最后阶段才会经历这种环境。吸气式发动机及其子系统、部件、子组件和组成材料都是专门为高超音速飞行这一独特恶劣环境设计和生产的,扩大其生产对于美国国防部高超音速导弹打击战略的成功至关重要,该战略被视为国防必不可少的一部分。助推巡航高超音速导弹在整个任务期间必须承受至少 2,000 华氏度的停滞温度,所有冷却源都必须来自燃料或辅助冷却剂,这些冷却剂在弹道过程中会被热浸透。此外,由于这些系统的速度比传统系统快 5 到 8 倍,因此发动机必须经过特殊设计,以便在高超音速下吸入空气并燃烧燃料,同时保持一致的性能;发动机的所有部件必须可靠地适应这种环境并以高精度运行,才能执行任务。这项艰巨的任务需要专门的设备、材料、工具和设计,以构建新颖的进气口和燃烧室几何形状、先进的燃油喷射系统、高性能燃料、有效的热管理系统以及耐用的发动机结构,如喷嘴喉口、出口锥和其他支撑部件。这些发动机的部件通常采用先进的增材制造、工具、热障涂层、射线检查和电子束焊接技术制造,以实现必要的性能。到目前为止,国防部已经支持了这一领域的概念验证和原型设计工作,但需要扩大工业基础能力以满足预期的未来需求。此外,目前的发动机设计是保密的,漫长的供应链(例如,
基于定制有源像素传感器 (APS) 的相机已设计、特性化并经过太空应用认证。该相机针对其在太阳磁力仪中的应用进行了优化,旨在用于太阳轨道器任务中的偏振和日震成像仪 (PHI)。设计的相机的控制电子设备在现场可编程门阵列 (FPGA) 中实现。对控制电子设备进行优化,可在高读出速度和温度梯度等可变操作条件下最大限度地降低相机噪声。此外,控制模块可保护图像传感器免受空间辐射引起的单粒子效应 (SEE) 的影响。图像传感器和相机的特性化结果揭示了它们的电气和光电性能。此外,三次辐射活动已经允许研究定制探测器对电离剂量、非电离剂量和单事件效应的耐受性。辐射,特别是非电离剂量,会显著增加传感器的暗电流,并对其他参数产生较小的影响。辐照后测试表明,如果保证适当的飞行退火和工作温度,这些影响可以部分克服,因此不会危及科学成果。对探测器实施的防 SEE 保护成功避免了相机的永久性功能故障。应用分析显示了相机特性及其与其他仪器单元的组合操作如何影响 PHI 磁力仪的偏振和计时性能。该分析既定义了相机的最低要求,又制定了联合操作偏振、光谱和成像模块的最佳策略。该仪器要求相机具有 2048 × 2048 像素的分辨率、快速读出和较大的满阱容量。反过来,任务的具有挑战性的轨道对所有机载子系统施加了恶劣的热和辐射环境。相机电子设备和 APS 传感器已经超越了这些得出的最低性能和操作条件。太阳轨道器是一项太空任务,将研究太阳、日光层以及它们之间的关系。该航天器将比以往任何太空任务更接近太阳。作为太阳轨道器有效载荷的一部分,PHI 磁力仪将测量太阳可见表面(即光球层)的磁场和气体流速。这项工作的大部分内容,包括需求研究、相机设计解决方案和图像传感器的辐射评估,都可以应用于未来的太阳观测站或直接用于其他太空科学相机。
减轻疟疾和相关死亡的负担受到了疟疾寄生虫能够发展对市场上所有可用疗法的抵抗力的能力的阻碍(Antony和Parija,2016年)。因此,了解寄生虫获得对抗疟药的耐药性的机制对于未来替代有效治疗的发展至关重要。如今,阿耳震蛋白及其衍生物(Arts)是推荐的治疗方法,以及长期伴侣,形成基于青蒿素的联合疗法(ACTS)。artemisin抗性,主要由环阶段存活测定法(RSA)定义,经常与K13蛋白中的突变有关,而K13蛋白不调节蛋白酶体的活性(Wicht等,2020)。然而,使用蛋白酶体抑制剂(例如环氧素)会增加抗性和敏感寄生虫中的青蒿素活性(Bozdech等,2015)。在该帐户中,泛素 - 蛋白酶体途径(UPP)的不同部分的突变可能会影响阿甘辛蛋白的反应(Bridgford等,2018)。最近的研究表明,19S和20S的蛋白酶体亚基的突变敏化K13 C580Y寄生虫,这是基于RSA的更大湄公河区域中最普遍的青蒿素耐药性突变,基于RSA(Rosenthal和Ng,2021; Rossenthal和Ng,20223)。此外,在编码非素化酶UBP-1的基因中的两个突变在抗甲半氨着这甲蛋白蛋白的抗chabaudi P. chabaudi寄生虫中被鉴定出来,并且证明它们可以介导恶性疟原虫中的艺术耐药性(Cravo,2022222)。后者负责底物的识别,去泛素化,展开和易位。泛素 - 蛋白酶体系统对于真核细胞至关重要,因为它负责蛋白质的降解或回收利用,侵蚀了几个细胞过程,包括细胞周期,转录调节,细胞应激反应,信号转导,信号转导,和细胞曲折(Wang et al。,2015年)。这种蛋白质调节对于在两个宿主之间的生命周期进程中发生的疟疾寄生虫经历的快速转化至关重要,尤其是在复制率高的阶段(Krishnan和Williamson,2018年)。UPP涉及一种称为泛素化的蛋白质后修饰过程,该过程将多泛素链连接到随后由26S蛋白酶体识别的蛋白质上。如果蛋白质被蛋白质组恢复或降解,则泛素化定义的类型(Aminake等,2012; Wang等,2015)。26S蛋白酶体是一种枪管形的多亚基蛋白酶复合物,分为20S核心颗粒(CP)和19S调节粒子(RP)。20S核心通过肽基戊酰基肽水解(PGDH)(caspase样),类似胰蛋白酶样和类似chymotrypsin的活性负责蛋白水解,分别遇到了三种B-亚基(B1,B2和B5)(分别为Wang et al。,2015年)。这些催化活性的亚基分别使用N末端苏氨酸作为酸性,胰蛋白酶和疏水残基的羧基末端后的亲核试剂和裂解。这些活动站点
一个很好的例子是,世界标准化地震仪网络 (WWSSN) 是第一个使全球地震学成为定量预测科学的社区仪器。在我作为一名新研究生首次进行地震学研究的经历中,美国西部 WWSSN 站的地震图非常重要。这些图像中的许多都是个人标志,展示了应该如何看待大地震的体波和表面波。通常,我们使用来自微缩胶片的大型扩展地震图副本,但偶尔我们会在发生重大地震后向地震站操作员索取数据,从而获得原始图像的一对一照片副本。WWSSN 数据对于我们的波形建模者小组来说是“黄金”,因为这些数据来自时间准确且具有标准校准仪器响应的地震仪器。首次,我们可以通过定量地震学比较某个区域或整个地球的波形振幅、形状和时间变化,从而推断震源和传播介质的特征。WWSSN 的数据在 20 世纪 60 年代板块构造范式的形成中发挥了关键作用。可以选取可靠的 P 波和 S 波行进时间来定位远震距离内的数百次地震,并且可以使用良好的初动来推断断层面解,从而阐明地球板块的应力状况和几何形状。在使用这个精致的模拟数据集的过程中,很明显,地震图定量分析的进一步发展需要数字数据,最终形成我们今天拥有的数字全球地震网络。按照现代数字标准,WWSSN 是一个动态范围非常低的系统。正如 Jon Peterson 和 Bob Hutt 在本报告中指出的那样,要拥有与当今记录器相当的模拟 WWSSN 系统,需要一个宽度为 17 公里 (km) 的摄影记录鼓,振镜和鼓之间的距离为 54 公里!即便如此,仍有许多“最佳点”距离,可以充分观察到各种规模的地震。今天,整个地球的数字地震观测数量惊人,因此人们可能想知道模拟数据在现代地震问题中起着什么作用。答案很简单。地震学是一个非常年轻的科学领域,历史数据集是了解过去的宝贵资源。地震危险评估取决于对历史地震源参数的分析。Chuck Langston 2014 年 3 月 28 日模拟数据可能是过去地震中唯一可用的数据,这些地震发生在以前建筑环境未开发的区域。模拟时代之后发现的新现象,例如“慢”地震、非火山震颤或俯冲带中的间歇性滑动,可以通过查看历史 WWSSN 数据来审查这些信号与以前大地震发生之间的关系。未来发现的新信号可能会记录在模拟 WWSSN 档案中。任何进行过地震实验的人都知道,收集好的数据非常困难,如果由于仪器故障或收集错误而丢失数据,那将是一场悲剧。WWSSN 是一项宏大的实验,它从全球大约 100 个站点生成了前所未有的高质量连续数据集合。仅凭这一点,它就成为地震学最成功的案例之一。使用这些数据进行的波形研究推动了该领域的各方面发展,并激发了当今大多数(如果不是全部的话)大规模地震实验和网络。这些数据对于历史和科学原因都很重要。