摘要:为了实现气候目标,全球必须摆脱化石燃料。对于电气化不切实际的行业,找到可持续的能源载体至关重要。可再生甲醇因其多种可持续的生产方法而被广泛认为是一种有前途的燃料,可用于为航运、货运、农业和工业机械等重型应用提供动力。虽然目前的技术努力主要集中在航运领域的双燃料发动机上,但未来的进展取决于使用可再生甲醇的单一燃料解决方案,以实现重型领域的净零目标。本综述研究了使甲醇成为重型应用唯一燃料的技术的研究现状。文献中出现了三个主要类别:火花点火、压缩点火和预燃室系统。分析了每个概念的运行原理和效率、稳定性和排放特征。火花点火概念是一种成熟度高、经济高效的解决方案。然而,它们面临着爆震问题的限制,限制了较大孔径的功率输出。压缩点火概念本质上不会受到末端气体自燃的影响,但由于甲醇十六烷值低,因此会遇到与可燃性相关的挑战。尽管如此,仍存在各种实现甲醇自燃的方法。要在所有负载点实现稳定燃烧,需要结合多种技术。预燃室技术尽管成熟度较低,但有望通过充当分布式点火源来延长爆震极限并提高效率。此外,混合控制预燃室概念显示出消除爆震以及相关尺寸和功率限制的潜力。本评论最后比较了每种技术并确定了未来研究的差距。
3 月 18 日,瓦萨奇山前发生的 5.7 级地震并不是犹他州人想象中的“大地震”,但其强度足以促使人们评估其对人们工作、聚会和娱乐的众多建筑的影响。幸运的是,犹他州一些最古老、最受尊敬的建筑瑰宝在严格的抗震标准成为普遍做法之前就已建成,它们在这次试运行地震中表现出色,这要归功于近几十年的远见和规划,这些远见导致了全面的基础隔震改造,从而保持了它们的稳定性。地震后对犹他州议会大厦和盐湖城及县政府大楼的检查表明,它们的基座隔震器(分别于 2008 年和 1989 年完工)发挥了作用。由于犹他州的规划,这些标志性建筑都表现得非常好。Paul 说,对现有建筑进行基础隔离存在很大的后勤和成本障碍
激光粉末床熔合是一项新兴的工业技术,尤其适用于金属和聚合物应用。然而,由于氧化物陶瓷的抗热震性低、致密化程度低以及在可见光或近红外范围内的光吸收率低,将其应用于氧化物陶瓷仍然具有挑战性。在本文中,给出了一种增加粉末吸收率和减少激光加工氧化铝零件过程中开裂的解决方案。这是通过在喷雾干燥的氧化铝颗粒中使用均匀分散和还原的二氧化钛添加剂(TiO 2 − x)来实现的,从而导致在粉末床熔合过程中形成具有改善的热震行为的钛酸铝。评估了不同还原温度对这些颗粒的粉末床密度、流动性、光吸收和晶粒生长的影响。使用含有 50 mol% (43.4 vol%) TiO 2 − x 的粉末可以制造出密度为 96.5%、抗压强度为 346.6 MPa 和杨氏模量为 90.2 GPa 的裂纹减少的零件。
Halsic-R 重结晶碳化硅 (RSiC) • 工作温度高达 1600°C(氧化),高达 2000°C(惰性气体)• 高抗热震性 • 高耐腐蚀性 • 标准应用:高温应用的窑具以及气相温度测量管 • 标准几何形状:板、梁、支架、管、保护管、滚筒、匣钵、坩埚、燃烧器喷嘴;可根据要求定制尺寸
1. 简介和目标 2. 建筑描述,包括隔震系统 3. 法规和规范基础 4. 结构建模 5. 通用场地抗震设计参数 6. 地震土-结构相互作用(SSI)建模和分析以及结构-土-结构相互作用(SSSI)建模和分析 7. 建筑动态响应 8. 建筑结构设计 9. 概率风险评估 10. 未决项目和未来调查
2019 年 9 月 24 日 - 日本船级社已向大阪燃气公司颁发了原则性批准 (AIP),用于其与大发柴油机公司联合开展的船用液化石油气重整器项目。这是日本首次为此类设备颁发 AIP。液化石油气重整器旨在将液化石油气转化为与液化天然气中相同的合成甲烷气体。液化石油气主要由丙烷和丁烷组成,易发生爆震(异常燃烧),因此难以用作稀薄燃烧燃气发动机和双燃料发动机的燃料。相反,通过在为发动机加油之前使用液化石油气重整器将液化石油气转化为合成甲烷气体,可以抑制爆震的风险,从而达到与使用液化天然气时相同的运行性能。此外,与使用传统重油燃料相比,使用 LPG 作为燃料可以显著减少 SOx 和 NOx 等对环境有害物质的排放,从而能够遵守 2020 年 IMO SOx 法规,并且通过使用船用发动机本身实现更多目标。使用 LPG 作为燃料时,适用《使用气体或其他低闪点燃料的船舶国际安全规则》(IGF 规则)。但是,当前的 IGF 规则并未针对 LNG 以外的替代燃料的具体规定。因此,ClassNK 于 2019 年 6 月发布了《使用低闪点燃料(甲醇/乙醇/LPG)的船舶指南》。