摘要 — 本文详细介绍了时域 (TD) 测试,以直观地了解带通 (BP) 负群延迟 (NGD) 对双线微带电路行为的影响。为了确定 TD 测试期间要使用的输入信号的中心频率和带宽,对电路进行了频域 (FD) S 参数分析。这项初步分析首先借助仿真,然后借助测量进行,结果显示 15 MHz(分别为 8 MHz)频带的 NGD 在 2.345 GHz(分别为 2.364 GHz)左右。为了在 TD 中观察 2.345 GHz 左右的 NGD 影响,使用高斯脉冲整形的 2.345 GHz 正弦载波进行了 TD 实验。在这些 TD 测试中,BP NGD 特征通过输出包络得到验证,输出包络比输入包络提前出现上升沿和下降沿。实验还表明,当输入正弦载波位于锂电路 NGD 频带之外时,输出通常会延迟。
鉴于最近在电光采样在检测电磁场基态和超宽带压缩态的亚周期尺度量子涨落方面的实验应用方面取得的进展,我们提出了一种方法,将宽带电光采样从光谱方法提升为全量子断层扫描方案,能够在时间域中直接重建自由空间量子态。通过结合两种最近开发的方法来从理论上描述量子电光采样,我们以分析的方式将电光信号的光子计数概率分布与采样量子态的变换相空间准概率分布联系起来,该分布是采样中红外脉冲态和超宽带近红外探测脉冲之间时间延迟的函数。我们对噪声源进行了分类和分析,并表明在使用超宽带探测脉冲的量子电光采样中,可以观察到由于纠缠破坏而引起的热化。减轻热化噪声可以实现宽带量子态的断层重建,同时允许在亚周期尺度上访问其动态。
基于皮层脑电图 (ECoG) 的双向脑机接口 (BD-BCI) 引起了越来越多的关注,因为:(1) 需要同时进行刺激和记录以恢复人类的感觉运动功能 [1] 和 (2) 良好的空间分辨率和信号保真度以及临床实用性。在刺激方面,这种 BD-BCI 可能需要 >10mA 的双相电流来引发人工感觉,以及 >20V 的电压顺应性以适应各种生物阻抗 [1]。两个刺激相之间的电荷不匹配会导致电压积累,从而造成电极腐蚀和组织损伤。现有的电荷平衡 (CB) 技术,例如电荷包注入 (CPI) [2] 和基于时间的电荷平衡 (TCB) [1],会在脉冲间隔内产生 CB 电流,导致不必要的二次感觉和过度的刺激伪影 (SA)。对于记录,低输入参考噪声 (IRN) 是获取小神经信号 (NS) 所必需的,而大动态范围 (DR) 则是容纳大 SA 所必需的。现有的记录系统采用 SAR [1] 或连续时间 delta-sigma (CT-ΔΣ) [3] ADC(图 4)。前者由于 DAC 不匹配而具有有限的 DR,而后者则受到环路延迟内大幅度尖锐 SA 引起的失真的影响。尽管在 [4] 中,ΔΣ-ADC 的采样频率会自适应地变化以适应 SA,但所需的稳定时间很长。为了解决上述问题,本文提出了一种基于 ECoG 的 BD-BCI,其中包括:(1) 具有双模基于时间的电荷平衡 (DTCB) 的高压 (HV) 刺激系统和 (2) 高动态范围 (HDR) 时域流水线神经采集 (TPNA) 系统。图 1 描绘了所提出的 BD-BCI。刺激系统包括 4 个刺激器,每个刺激器包括一个 8 位分段电流控制 DAC 和一个 HV 输出驱动器,用于生成刺激脉冲。为了执行 CB,每个刺激器都采用具有 2 种模式的 DTCB 环路,即无伪影 (AL) TCB 和脉冲间有界 (IB) TCB 模式。3 阶 II 型 PLL 为基于时间的量化创建所需的时钟。记录系统有 4 个通道,每个通道都采用低增益模拟前端 (LG-AFE)、HDR 电压时间转换器 (VTC)、两步流水线 (TSP) TDC 和一个数字核心,其中操作模式由状态机控制。受 [1] 的启发,所提出的 DTCB 的工作原理如图 2 所示。AL-TCB 监测电极电压 V ESn -V CM (1≤n≤N;此处,N=4)并调整后续刺激脉冲的幅度而不产生额外的 SA,而当 |V ESn -V CM | 过大而需要立即去除电荷时,IB-TCB 在下一个刺激脉冲之前完成 CB。在第一个 T CC 开始时,如果 |V ESn - V CM |≤V TH,AL (V TH,AL 是标志着需要立即去除电荷的过电位阈值),则 AL-TCB 导通,并且 V ESn - V CM 在第一个 T CC 周期内由 VTC 和 TDC 数字化。然后将数字数据 D TDCn 馈送到通道间干扰消除 (ICIC) 模块,该模块可补偿由于多极刺激导致的通道间干扰 (ICI) 引入的电压误差。接下来,数字直流增益增强器 (DDGB) 有助于提高 CB 精度,而不会降低 AL-TCB 环路稳定性。为了执行 CB,AL-TCB 的电流(例如,I AL-Cn )(其大小由 DDGB 输出 D ALn 控制)被添加到后续刺激电流中以调整其大小。相反,仅当 |V ESn -V CM |>V TH,AL 时,IB-TCB 才会开启并在一个 T IP 内的几个 T CC 中执行 CB,直到 |V ESn - V CM |
J. Anila Maily a,b C. Velayutham 博士 c*,M.Mohamed Sathik da 研究学者,(兼职内部)(注册号:12336),Sadakathullah Appa 学院计算机科学系,Rahmath Nagar,Tirunelveli- 627011 b 副教授,圣玛丽学院(自治),Thoothukudi。 c *蒂鲁琴杜尔阿迪塔纳尔艺术与科学学院院长兼副教授,d Sadakathullah Appa 学院校长,Rahmath Nagar, Tirunelveli -627011, 泰米尔纳德邦,印度。 a,b,c,d 附属于 Manonmaniam Sundaranar 大学,Abishekapatti, Tirunelveli-627012, 泰米尔纳德邦,印度。文章历史记录:收稿日期:2021 年 1 月 10 日;修订日期:2021 年 2 月 12 日;接受日期:2021 年 3 月 27 日;在线发表日期:2021 年 4 月 28 日 _____________________________________________________________________________________________________ 摘要:脑机接口 (BCI) 提供了大脑与外界之间的沟通途径。对于因神经肌肉疾病而致残的人来说,这是一种福音。BCI 的工作原理是测量脑信号、分析、解释它们并将其转化为动作。脑电图 (EEG) 是大脑产生的电活动的测量。运动意象是在没有任何身体运动的情况下对运动的心理模拟。每个脑信号都由几个称为特征的相关值量化。一旦提取出特征,就可以识别用户的意图。特征提取模块负责选择对分类非常重要的特征。在本文中,我们提出了时域统计特征提取技术,例如均值相关性、峰度、偏度,并使用 KNN 分类器进行分类。将结果与通用空间模式(CSP)提取的特征进行比较,并使用线性判别分析分类器进行分类。关键词:BCI,EEG,运动想象,特征提取
特色应用:不同任务中舰载机保障作业的动态调度研究涉及多种保障资源(可再生资源包括保障作业人员和保障设备,不可再生资源包括油料、氧气、氮气、液压、电力等),作业活动需满足串行和并行约束关系,多重约束(可再生资源约束、不可再生资源约束、作业空间约束)等复杂的调度过程。这些资源的有效协调可以描述为不确定环境下的多资源约束多项目调度问题(MRCMPSP)。本文建立了舰载机动态保障调度的整数规划数学模型,解决了非确定性多项式时间难(NP-hard)问题。针对不确定、动态的环境,受到预测控制技术中的滚动时域(RH)优化方法的启发,提出了一种周期性、事件驱动的滚动时域(RH)调度策略。 RH策略不仅降低了问题规模,而且在合理的计算时间内有效地调整了基线调度,避免了在动态飞行甲板环境下不必要的调度,实现了资源的有效分配。设计了双种群遗传算法(DPGA)来解决大规模调度问题。计算结果
特色应用:不同任务中舰载机保障作业的动态调度研究涉及多种保障资源(可再生资源包括保障作业人员和保障设备,不可再生资源包括油料、氧气、氮气、液压、电力等),作业活动需满足串行和并行约束关系,多重约束(可再生资源约束、不可再生资源约束、作业空间约束)等复杂的调度过程。这些资源的有效协调可以描述为不确定环境下的多资源约束多项目调度问题(MRCMPSP)。本文建立了舰载机动态保障调度的整数规划数学模型,解决了非确定性多项式时间难(NP-hard)问题。针对不确定、动态的环境,受到预测控制技术中的滚动时域(RH)优化方法的启发,提出了一种周期性、事件驱动的滚动时域(RH)调度策略。 RH策略不仅降低了问题规模,而且在合理的计算时间内有效地调整了基线调度,避免了在动态飞行甲板环境下不必要的调度,实现了资源的有效分配。设计了双种群遗传算法(DPGA)来解决大规模调度问题。计算结果
DNA损伤和修复过程如何影响核内部核的生物力学特性。这里,基于时间域的光学显微镜(TDBS)用于研究诱导的核内力学的调节。使用这种超快泵探针技术,在核内纳米结构中沿其传播跟踪相干的声音子,并通过光学分辨率测量了复杂的刚度模量和厚度。骨肉瘤细胞暴露于甲基甲磺酸甲酯(MMS),并使用针对损伤信号蛋白的免疫检测测试DNA损伤的存在。tdbs表明,由于染色质反应和重组,核内存储模量在暴露于MMS时显着降低,这有利于细胞器内的分子扩散。去除破坏剂并在缓冲溶液中孵育2小时时,固定后,核内重组会导致储存模量的反向演变,核会僵硬。当DNA双链断裂是由细胞暴露于电离辐射引起的时,也测量了相同的趋势。tdbs显微镜还揭示了声学耗散的变化,纳米级核内组织的另一种机械探针以及在暴露于MMS和恢复后的核厚度的变化。
1 山西大学光电研究所量子光学与量子光学器件国家重点实验室,太原 030006,中国 2 山西大学极端光学协同创新中心,太原 030006,中国 3 合肥国家实验室,合肥 230088,中国 4 中国信息通信科技集团公司光通信技术与网络国家重点实验室,武汉 430074,中国 5 国家信息光电子创新中心,武汉 430074,中国 6 浙江大学 - 杭州全球科技创新中心,杭州 311215,中国 ∗ 通讯作者。
号质量,提高信噪比。特征提取根据特定的BCI范式所设计的心理活动任务相关的神经信号规律,采用时域、频域、空域方法或相 结合的方法提取特征。模式识别通过采用先进的模式识别技术或机器学习算法训练分类模型,针对特定的用户定制特征提取和解 码模型。 3. 控制接口:根据具体的通信或控制应用要求,控制接口把上述解码的用户意图所表征的逻辑控制信号转换为语义控制信号,并由
Towards real time monitoring of blood oxygenation in human body through Time Domain Diffuse Correlations Spectroscopy Professor: Prof. Edoardo Charbon Office MC A3.303 e-mail: edoardo.charbon@epfl.ch Lab deputy: Dr. Claudio Bruschini Office MC A3.307 email: claudio.bruschini@epfl.ch Scientific Assistant Contacts: Paul Mos Office MC A3.257电子邮件:paul.mos@epfl.ch项目类型:主项目部分:微工程官方开始日期:任何时间提交最终报告:小组会议上的TBD演示文稿:TBD单光子雪崩二极管(SPAD)摄像机在基于LIDAR的应用程序中广泛使用。弥漫性相关光谱已经用于监测脑血流,并以激光分离为4厘米的光学探针。通过添加时间域,预期较高的信号与噪声比。