高速计算机和无线通信系统的抽象在电子市场中变得越来越流行,这些面向通信的产品需要高包装密度,时钟速率和更高的GB/s开关速度。在这项工作中表征了用于以1 GB/s运行的应用程序的多层翻转球网阵列(FCBGA)软件包。包装的电特性超出了1 GHz的必要性。在本文中,我们介绍了使用时域反射测量法(TDR)方法互连FCBGA软件包的测量和仿真结果。模拟和测量结果,以建立适当的FCBGA互连电路模型。电力网络的寄生虫可以通过TDR,矢量网络分析仪(VNA)和阻抗分析仪(IA)来测量。这项工作中生成的完整模型针对的是在商业电子应用中具有广泛用途的高速系统片(SOC)设备。关键字翻转芯片球网格阵列(FCBGA),电特性,时域反射仪(TDR),矢量网络分析仪(VNA),片上系统(SOC)1。简介半导体的国际技术路线图(ITRS)驱动程序章节介绍了未来半导体行业发展的总体SOC环境[1]。它处理大型功能块,例如RF,CPU,硬件元素(数字和模拟/混合信号块),软件元素,胶水逻辑,功能特定内核,通信接口和软件堆栈,作为可重复使用的和预验证的组件。这些组件可以插入许多不同的SOC中,这是减少必须完成新产品必须完成的低级设计工作量的一种方法[2] [3]。虽然预计通信市场将保持显着的频率线索,但高速序列方案的渗透到微处理器,ASIC和SOC市场的形式
______________________________________________________________________________________________ 摘要:本文介绍了使用超前补偿器和模糊控制器对纵向平面的飞机进行控制。飞行系统的设计需要线性化的纵向动力学数学模型。超前补偿器具有超前网络的特性,可改善系统的瞬态响应。为了控制俯仰角,使用 Matlab - simulink 模型来调整补偿器,并使用 Mamdani 型模糊逻辑控制器 (S.N.Deepa 和 Sudha G.2014) 通过模拟选择适当的模糊规则来调整参数。模拟结果以时域规范的形式呈现,并基于阶跃响应分析了性能。进行比较以确定哪种控制策略可以更好地响应所需的俯仰角。索引术语 - 模糊控制器、超前补偿器、纵向动力学、飞机。 ______________________________________________________________________________________________
论文 [5] 提出了一种非线性和基于时域的分析模型,用于在统一振动机制下获得 SMP 的寿命。这项研究表明,对于弹性范围内的材料,振动频率越高,损坏程度就越大。然而,对于非弹性范围,低负载频率会在每个循环中对焊料造成更大的损害。此外,[6] 提出了一种热循环和动态振动负载对 SMP 的影响模型,该模型使用叠加规则,并分别针对这些影响获得焊料的疲劳寿命。这项研究表明,振动和热应变对焊料互连具有弹性和非弹性行为,在 SMP 的疲劳研究中应同时考虑,尤其是对于汽车和军事应用等移动系统。
网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。
摘要。基于模态的降阶模型因其在工程问题中的计算效率而成为结构建模的首选。经典模态方法的一个重要限制是它们是几何线性的。本研究提出了一种快速校正方法来解释由悬臂梁的大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加的额外计算工作量可以忽略不计。在直梁模型和国际能源署 (IEA) 15 MW 风力涡轮机叶片模型上检验了该方法的准确性。结果表明,对于所研究的两种情况,所提出的方法显著提高了模态方法在轴向和扭转运动等非线性引起的二次挠度方面的准确性。
摘要。基于模态的降阶模型因其在工程问题中的计算效率而成为结构建模的首选。经典模态方法的一个重要限制是它们是几何线性的。本研究提出了一种快速校正方法来解释由悬臂梁的大挠度引起的几何非线性。该方法依赖于预先计算的校正项,因此在时域响应分析期间增加了可忽略不计的额外计算工作。在直梁模型和国际能源署 (IEA) 15 MW 风力涡轮机叶片模型上检验了该方法的准确性。结果表明,对于所研究的两种情况,所提出的方法显著提高了模态方法在由于轴向和扭转运动等非线性引起的二次挠度方面的准确性。
1.简介 美国国家标准与技术研究所 (NIST) 有一项服务 [1],用于测量高速 (脉冲持续时间 < 1 ns) 脉冲发生器的输出。这项服务,服务编号为 651OOS,提供脉冲频谱幅度参数的估计值 [2]。此术语的其他使用名称包括:频谱幅度、电压频谱、脉冲强度、频谱强度、脉冲频谱强度、脉冲面积和频谱密度。这项服务的主要应用是测量用于电磁干扰发射和抗扰度测试的脉冲发生器的脉冲频谱幅度。然而,随着校准程序的改进,651OOScan 现在通过提供超宽带 (UWB) 信号频谱幅度参数的测量来支持超宽带电子界。UWB 信号的时域脉冲参数,例如脉冲宽度、过渡持续时间等。调制包络,可以使用 NIST 的 65200S 和 65250S 脉冲测量服务进行测量。
2.1 时域和频域 19 2.1.1 傅里叶变换 20 2.1.2 DFT 的周期性 21 2.1.3 快速傅里叶变换 22 2.2 采样理论 23 2.2.1 均匀采样 23 2.2.2 均匀采样的频域表示 25 2.2.3 奈奎斯特采样定理 26 2.2.4 奈奎斯特区 29 2.2.5 采样率转换 29 2.3 信号表示 37 2.3.1 频率转换 38 2.3.2 虚信号 40 2.4 信号指标和可视化 41 2.4.1 SINAD、ENOB、SNR、THD、THD + N 和 SFDR 42 2.4.2 眼图 44 2.5 SDR 的接收技术 45 2.5.1 奈奎斯特区域 47 2.5.2 定点量化 49
尽管频率响应分析通常使用专用设备进行,但可以使用较新的示波器来测量电源控制环路的响应。这种分析通常被称为亨德里克·韦德·波德 (Hendrik Wade Bode) 的波特图。传统上,这种分析使用 FFT 算法来测量系统在目标频率范围内的增益和相位。一些新型示波器(例如 4、5 和 6 系列 MSO)在所有通道上采用专用数字下变频器,这些下变频器独立于时域采样率和记录长度运行。此功能称为“频谱视图”,以区别于传统 FFT,可用于改善频率响应分析的结果。本白皮书使用传统 FFT 和频谱视图对两种不同的被测设备 (DUT) 的波特图(也称为控制环路响应)进行了比较。
以前,已经使用专用仪器分析了频率响应,但是新一代示波器现在可以测量电源的控制环响应。该分析称为Hendrick Wade Bode之后的Bode(Bode)图。 传统上,该分析使用FFT算法来测量在特定频率范围内系统的增益和相位。诸如4/5/6系列MSO之类的较新示波器具有所有通道上专用的数字下调器,它们独立于时域样本率和记录长度设置。通过称其为频谱视图,该功能与传统的FFT区别开来,在频率响应分析中提供了出色的结果。这份白皮书使用传统的FFT和频谱视图来比较两个不同DUTS(测量设备)的bode图(控制环响应)。