1. 基础研究和工程前沿项目遵循自 2014 财年启动以来一直实施的指导方针。但是,它们主要侧重于科学和技术(预算活动 6.1、6.2 和早期 6.3)。这些项目无法使用通常可用的 HPCMP 资源轻松实现,预计在 2 到 4 年的时间内每年使用数亿个核心小时和/或数十万个 GPU 小时。2. 应用采购和维持前沿项目涉及国防部的设计、开发和测试与评估项目;它们专注于记录、测试和评估项目以及针对紧急运营要求的快速响应科学和技术。这种类型的项目通常更注重时间,执行时间更短,预计在 1 到 2 年的时间内每年使用数千万个核心小时和/或数千个 GPU 小时。作为前沿项目,这些项目将受益于更高的系统优先级,从而缩短时间线并提高吞吐量。还有一个选项是在提案周期之外启动应用采购和维持前沿项目。此过程发布在资源管理网站上。新的应用采购和维持前沿项目提案应响应此年度征集提交,直至此提案征集到期。
显著减慢交易处理速度。** CPPA 必须根据 NPPSC 1800/1 舰队预备役/退役清单或 NPPSC 1900/2 离职清单提交所有必需的关键支持文件 (KSD)。时间线:FLTRES、退役和 EAOS 离职 离职命令:离职日期前 9-5 个月。提交 NPPSC 1800/1 或 NPPSC 1900/2 清单 (第 I 部分) 中列出的 KSD 以获取离职命令。PTDY/离职日期目前可能为暂定日期。 开始起草 DD-214:离职日期前 9-5 个月。提交清单(第 I 部分)中列出的 KSD,开始起草 DD-214 供成员审查。PTDY/离职假日期目前可能为暂定日期。 完成 Sep 套餐:不迟于批准的 PTDY/离职假前 60 天:提交清单(第 I 部分)中列出的剩余 KSD,以完成离职交易。如果在 60 天内无法获得医疗认可,请提交所有其他所需文件。尽快提交最终医疗认可,并在成员脱离指挥之前提交。提交延迟将严重影响成员的离职,包括 DD-214 的完成,并可能影响退休福利。
结果:我们发现线粒体的大小和数量在新生神经元中的大小和数量较低,然后随着神经元在特定物种特定的时间线后的成熟而逐渐生长。虽然在小鼠神经元中,线虫在3到4周内达到成熟的模式,但仅在人类神经元几个月后才这样做。我们接下来测量了人和小鼠发展皮质神经元的线粒体氧化活性和葡萄糖代谢。这揭示了线粒体的功能成熟的特定物种时间表,而小鼠神经元比人神经元表现出的线粒体依赖性氧化活性的速度要快得多。我们还发现,人皮质神经元比同一年龄的小鼠神经元显示出低水平的线粒体驱动的葡萄糖代谢。最后,湿润的塞素蛋白软骨会影响神经元的发育时机。我们进行了人类发育的皮质神经元的药理或遗传操作,以增强线粒体氧化代谢。这导致了加速的神经元成熟,神经元提前几周表现出更多成熟的特征,包括复杂的术语,增加的电兴奋性和功能性突触形成。对小鼠神经元的类似治疗也导致了更快的成熟,而小鼠神经元中线虫代谢的抑制导致发育率降低。
摘要:脑电图 (EEG) 测量由运动想象范式 (MI) 刺激的大脑活动,该技术与广泛使用的脑机接口 (BCI) 技术结合使用具有多种优势。然而,记录数据的内部/外部差异显著,对个人技能对所取得的表现有重大影响。本研究探索区分 MI 任务的能力以及大脑产生诱发心理反应的能力的可解释性,从而提高准确性。我们开发了一个深度和宽度卷积神经网络,该神经网络由从多通道 EEG 数据中提取的一组拓扑图提供。此外,我们沿 MI 范式时间线以不同间隔执行基于梯度的类激活图 (即 Grad-Cam++) 的可视化技术,以解释神经反应随时间变化的受试者内部差异。我们还对提取的地图的动态空间表示在整个受试者集中进行聚类,以更深入地了解 MI-BCI 协调技能。根据对运动诱发电位 GigaScience 数据库进行评估的结果,所开发的方法增强了运动意象的生理解释,例如节律之间的神经同步、大脑侧化以及预测 MI 发作反应及其在训练期间的演变的能力。
摘要森林是多重时间性的区域。它们记录时间,并通过计时实践构成。环境监测和管理的数字技术越来越多地组织森林的时间性。本文探讨了新兴的技术时间性如何测量、调整和改变森林世界,同时再现和重新配置殖民和资本主义技术的更长持续时间。我们汇集了关于政治森林、数字媒体时间性以及反殖民和土著思想的学术研究,以分析通过数字技术实现的时间政治,并塑造森林的过去、现在和未来是可感知和可能的。特别是,我们追踪“实时”的社会技术生产,将其作为体验、了解和治理森林环境的时间记录。通过分析亚马逊地区的实时森林砍伐警报系统,我们思考了这些时间性如何使即时、连续的森林数据变得有价值,这些数据可用于了解和保护森林,同时又掩盖了依赖于剥夺、开采和圈地的长期殖民主义和资本主义森林框架。本文的后半部分转向土著未来主义以及重新塑造森林时间性的数字平台的艺术和社会政治用途。通过分析这些多重且有时相互矛盾的时间性,我们认为这些实践和干预措施可以通过时间性、土地和数据主权的多元化和再分配配置来挑战主流时间线及其不平等。
太空飞行系列文章的一部分 历史 太空飞行史 太空竞赛 太空飞行时间线 太空探测器 月球任务 应用 地球观测卫星 间谍卫星 通讯卫星 军用卫星 卫星导航 太空望远镜 太空探索 太空旅游 太空殖民 航天器 机器人航天器 卫星 太空探测器 货运航天器 载人航天 太空舱 阿波罗登月舱 航天飞机 空间站 太空飞机 航天发射 太空港 发射台 一次性和可重复使用的运载火箭 逃逸速度 非火箭航天发射 航天类型 亚轨道 轨道 行星际 星际 星系际 空间组织列表 航天机构 太空部队 公司 太空飞行门户网站 卫星导航或 satnav 系统是一种使用卫星提供自主地理定位的系统。覆盖全球的卫星导航系统称为全球导航卫星系统 (GNSS)。截至 2023 年[更新],有四个全球系统投入运营:美国的全球定位系统 (GPS)、俄罗斯的全球导航卫星系统 (GLONASS)、中国的北斗卫星导航系统[1] 和欧盟的伽利略。[2] 正在使用的区域导航卫星系统是日本的准天顶卫星系统 (QZSS),这是一种基于 GPS 卫星的增强系统,可提高 GPS 的准确性,卫星导航独立于 GPS 计划于 2023 年实现[3],以及印度的区域导航卫星
机械手 摘自:SciencetoyMaker.org 如何制作一个工作模型机械手 目标 学生将: • 学习有关机器人技术的基本信息 • 制作一个与人手非常相似的机械手 建议年级 6 至 12 年级 学科领域 机器人技术、技术、工程设计 时间线 60-90 分钟 标准 (NGSS) • MS-ETS1-4 开发一个模型来生成数据,用于迭代测试和修改拟议的对象、工具或流程,从而实现最佳设计 • HS-ETS1-2 将复杂的现实问题分解为可以通过工程解决的更小、更易于管理的问题,从而设计解决方案 21 世纪基本技能 • 创造力和想象力 • 信息素养 • 主动性 • 分析 • 预测模式 背景 机器人是一种能够执行由工程师编程的常规或复杂操作的机器。如今,机器人可用于手术、太空探索、制造和代码分析等方面。人类已经开发机器人和自动机数百年了。自 2000 年代以来,技术的进一步进步带来了更先进的自动化和人工智能。自动化机器被编程为反复执行一个动作,如今已用于制造业、海洋探索、太空探索、军事和商业化农业。由于创新速度快,机器人的未来很难预测。然而,据预测,机器人很可能会在家庭和商业世界中发挥更大的作用。
免疫抑制分子程序性细胞死亡配体 1 (PD-L1) 已被证明在自身免疫、感染和癌症等病理中发挥作用。PD-L1 不仅在癌细胞上表达,而且在未转化宿主细胞上的表达也与癌症进展有关。小鼠系统中 PD-L1 缺陷的产生使我们能够专门研究 PD-L1 在生理过程和疾病中的作用。最通用且最易于使用的位点特异性基因编辑工具之一是 CRISPR/Cas9 系统,它基于 RNA 引导的核酸酶系统。与其前身锌指核酸酶或转录激活因子样效应核酸酶 (TALEN) 类似,CRISPR/Cas9 催化双链 DNA 断裂,这可能导致由于非同源末端连接 (NHEJ) 的随机核苷酸插入或缺失而导致的移码突变。此外,尽管不太常见,但 CRISPR/Cas9 可以在存在合适模板的情况下通过同源定向修复 (HDR) 导致插入确定的序列。在这里,我们描述了使用 CRISPR/Cas9 在小鼠 C57BL/6 背景下敲除 PD-L1 的方案。外显子 3 的靶向结合 HindIII 限制位点的插入会导致过早终止密码子和功能丧失表型。我们描述了靶向策略以及创始者筛选、基因分型和表型。与基于 NHEJ 的策略相比,所提出的方法可产生具有与 NHEJ 相当的效率和时间线的确定终止密码子,生成方便的创始者筛选和基因分型选项,并且可以快速适应其他目标。
地球轨道正变得越来越繁忙。这一现象迅速增加了驻留空间物体 (RSO) 之间的碰撞概率。由于 RSO 飞行速度快,碰撞的后果是灾难性的。然而,即使空间目录规模适中,准确有效地预测会合及其最佳避免也一直是一个挑战。在新太空时代,随着预期的极端物体数量,这种情况肯定会继续存在。在这里,我们提供了一个 Web 服务器 SPACEMAP,它可以 (近乎) 实时地解决会合评估和最佳机动规划。SPACEMAP 通过快速评估二级和三级会合的副作用来呈现机动替代方案的最佳候选方案,从而克服了具有挑战性的计算要求。三级会合是在感兴趣的对象 (OOI) 和附近其他快速飞行的 RSO 之间定义的,它具有特别重要的意义,可以通过利用计算能力强大的新几何构造 Voronoi 图来解决。 SPACEMAP 还在时间线上提供了各种关键情报和优化功能:预测在我开车时可以监视我的敌方卫星;预测距离自身资产 10 公里以内的敌方卫星;预测可能对自身资产造成频谱干扰的敌方卫星;在预测干扰下找到自身资产的最佳数据传输路线;找到通过一个星座或通过多个轨道上的多个星座在城市对之间最佳的数据传输时间表;找到监视地面或太空热点的最佳时间表。SPACEMAP 目前使用来自 Space-track 的 TLE 数据。合并其他数据类型(如遥测数据(例如 GPS)、测量数据(例如雷达)、ADS-B、AIS 等)相当简单。SPACEMAP Web 服务器在 Amazon Web Services (AWS) 上运行。
摘要 未来十年,通过增加中低收入国家 (LMIC) 的疫苗接种机会,可以避免数百万人死亡。COVID-19 大流行表明,疫苗的研发 (R&D)、推出和扩大规模的时间线可以大大缩短。本研究比较了 18 种疫苗的时间表,并确定了加快其他候选疫苗研发、推出和扩大规模过程的经验教训和启示。为了复制 COVID-19 疫苗的快速研发流程,未来的疫苗研发应利用公私知识共享伙伴关系来促进技术创新,建立区域临床试验中心和数据共享网络以优化临床试验效率,并创建资助机制来支持对新型疫苗平台的研究,这些平台可能对在未来全球卫生紧急情况下快速开发候选疫苗大有裨益。为了加快疫苗上市时间,未来将安全有效的疫苗推向市场的努力应将中低收入国家纳入全球采购和交付联盟的决策过程,以优化疫苗在这些国家的上市,加强世卫组织的资格预审和紧急使用清单计划,以确保中低收入国家拥有可靠、透明的监管体系,并投资于中低收入国家的监管和生产能力,以确保这些国家实现疫苗自给自足。最后,加快疫苗规模化的努力应包括在中低收入国家之间建立区域联合采购机制,以提高这些国家的购买力,并就疫苗相关信息与公众建立开放、清晰的沟通渠道,以打击错误信息和疫苗犹豫。
