Wꞏm -2 ꞏK -4 ṁ 质量流量 (kg s -1 ) Փ 直径 (m) ∆P 压降 (Pa) θ 出口温度阈值系数 Pe 佩克莱特数,Pe=D p ꞏu sup /α Pr 普朗特数,Pr=C p,f ∙ μ f / λ frp 球体径向坐标 下标 r 罐体径向坐标 amb 环境 Ra 瑞利数,Ra= GrꞏPr Re 颗粒雷诺数,Re= ( ρ f ꞏD p ꞏu sup )/ μ fb 罐内直径的填料床区域 R int 罐体内半径 (m) ch 装料 R mid 罐体中部半径 (m) dis 卸料 R ext 罐体外半径 (m) eff 有效值 t 时间 (s) ext 罐体外表面 T 温度 (K) f 流体 TC 入口最冷工作温度 (K) TH 最高工作温度(K) int 罐内表面 T in 流体入口温度 (K) max 最大 T out 流体出口温度 (K) out 出口 T o 参考温度 (K) p 颗粒 TA A 位置的径向温度 rad 辐射 TB B 位置的径向温度 s 固体 TC C 位置的径向温度 sf 固体到流体相 u 间隙流体速度 (ms -1 ),u = ṁ /( ρ f ꞏεꞏπꞏR 2 int ) w 壁
摘要。我们概括了感热通量 (H) 估计的方法,这是基于遥感 (RS) 的蒸散 (ET) 模型中的一个关键参数。我们提出了一种 ET 模型分类方案,考虑到它们在估计 H 的方法上的区别。遵循所提出的分类方案,简要讨论了单源和双源 RS ET 模型中 H 估计的理论背景及其独特特点。我们讨论了影响每个模型下 H 计算的关键参数的作用,并介绍了相关研究进展。在单源和双源模型的背景下,讨论了数据同化技术的重要性,以及无人机在湍流热通量不间断估计中的应用。讨论了尺度对模型验证的影响以及聚合方法的影响。我们利用从同行评审文章中获得的信息,比较了流行的 ET 模型在估计 H 方面的性能。讨论了与 RS 数据集在空间和时间分辨率方面的局限性以及使用未来卫星任务缓解缺点的范围。最后,我们指出了当前的挑战和未来的研究领域,需要在未来认真解决这些问题。© 2020 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.JRS.14.041501]
本文研究了焚烧煤电厂煤底灰 (CBA) 废物中添加的砂粘土陶瓷的机械性能和热性能,以开发一种用于热能存储 (TES) 的替代材料。采用烧结或烧成法在 1000˚C 和 1060˚C 下开发陶瓷球。用压缩机压缩所得陶瓷,并使用 Decagon devise KD2 Pro 热分析仪进行热分析。还使用马弗炉在 610˚C 下进行热循环。发现 CBA 增加了孔隙率,从而使砂粘土和灰陶瓷的轴向拉伸强度增加到 3.5 MPa。选择了具有 TES 所需拉伸强度的陶瓷球。它们的体积热容量和热导率范围分别为 2.4075 MJ·m −3 ·˚C −1 至 3.426 MJ·m −3 ·˚C −1,热导率范围为 0.331 Wm −1 ·K −1 至 1.014 Wm −1 ·K −1,具体取决于沙子的来源、大小和烧成温度。所选配方具有良好的热稳定性,因为最易碎的样品经过 60 次热循环后也没有出现任何裂纹。这些特性使人们可以设想将陶瓷球用作聚光太阳能发电厂温跃层热能存储(结构化床)的填充材料。以及用于太阳能灶和太阳能干燥器等其他应用。
摘要:为了将大量可再生能源整合到电网中,必须使用大规模和长时间(4-8 小时以上)的电能存储技术。这种有前途的存储技术是基于布雷顿循环的泵送热电存储。本文的创新之处在于对这种存储技术的两种替代配置进行了技术经济比较。从技术经济的角度研究和比较了基于液体和基于固体的泵送热电存储。评估了工作流体(空气、氮气和氩气)、额定功率和标称容量的成本影响。根据考虑的配置,空气是这两种技术最合适的工作流体,它简化了工厂管理,与氩气相比,成本降低了 1% 至 7%。尽管布局更复杂,热存储材料更昂贵,但基于液体的系统是最便宜的,尤其是对于大型应用而言。这是因为它们的工作压力较低,从而降低了涡轮机和热能存储材料容器的成本。液体系统每千瓦时的成本比固体系统低 50% 至 75%。相反,每千瓦成本使固体系统受益,最高可达 50 MW 的额定功率,而对于更大的额定功率,液体系统的功率转换装置再次更便宜。这是由于涡轮机对总成本的影响。涡轮机约占固体系统总成本的 70%,而液体系统约占 31%。由于与其他部件相比,涡轮机的成本与尺寸的相关性较差,因此固体系统不太适合大型应用。
为波兰最大的城市之一供热和供电并配备 TES 系统的三座城市 (DHS) 均采用了蒸汽缓冲系统。所分析的三座 TES 的容量从 12,800 到 30,400 立方米不等,水箱直径从 21 到 30 米不等,壳体高度从 37 到 48.2 米不等。在 TES 水箱中使用蒸汽缓冲系统的主要目的是保护其中储存的水不会通过位于水箱顶部的调压室和安全阀吸收周围大气中的氧气。这里介绍的用于向水箱注入和排出热水的上部孔口和用于循环水的吸水管的技术解决方案使我们能够在蒸汽缓冲系统中节省大量能源。上部孔口和吸水管末端均可通过使用浮筒移动。由于采用了该技术解决方案,在 TES 水箱上部的上部孔口上方形成了稳定的绝缘水层,从蒸汽垫空间到水箱中储存的热水的对流和湍流热传输受到显著限制。最终,与 TES 水箱中蒸汽垫系统的经典技术解决方案(即上部孔口和循环水管)相比,热通量减少了约 90%。本文提出的简化分析及其结果与蒸汽垫空间到 TES 水箱上部储存的热水的热流实验数据的比较充分证实了所用热流模型的有效性。