Command1~Command n: 发送显示地址命令,地址1~n(最多可设置6个地址) Data1~Data n:发送显示数据(最多6 bytes) Time:数据线置高时间(最小时间为3ms) CommandX:发送显示控制命令(0x18) CommandY:发送显示控制调节命令(包括位占空比、段驱动电流以及显示模式设置) 芯片不需要命令来设置芯片是工作在地址自动加1模式还是固定地址模式,严格来说它只有一种地 址自动加1模式,此处划分是为了更好地说明芯片也可以单独给某个显示寄存器地址写显示数据,如 果单独给某个显示地址写显示数据,写完显示地址后,紧跟着只能写一个显示数据,就把信号线置高 至少3ms,如果紧跟着写几个显示数据,那么芯片在接收到第一个数据后,显示地址就会在规定的地 址上自动加1,再接收第二个显示数据,直到接收到最后一个显示地址的显示数据。
浏览菜单 .................................................................. 15 传感器单元菜单和设置概览 .............................................. 15 触摸屏导航 ...................................................................... 15 按钮导航 ...................................................................... 16 主菜单 .............................................................................. 17 将收藏功能添加到主菜单屏幕 ........................................ 17 从主菜单屏幕删除收藏功能 ........................................ 18 显示控制屏幕 ...................................................................... 18 控制屏幕上的设置 ............................................................. 19 相机设置菜单 ............................................................. 20 图像菜单 ............................................................................. 20 质量菜单 ............................................................................. 21 视频设置菜单 ............................................................. 22 质量菜单 ............................................................................. 22 实时显示菜单 ............................................................. 23
图 1:扩展的多尺度模型。组织尺度:脑切片中 36 · 10 3 个神经元(粉色圆圈)中的几个浸没在浴槽中;神经胶质细胞未明确建模,而是表示为每个 ECS 体素中的汇场。细胞尺度:每个神经元都有离子通道、2 个共交换器;Na + /K + 泵(星号表示 ATP/O 2 依赖性)离子在每个神经元内混合均匀(无细胞内扩散)。蛋白质尺度:表格(右)显示控制神经元和神经胶质细胞场中内在机制活动的物种。[离子] 尺度:离子根据菲克定律在 ECS 体素之间扩散,扩散系数见表 1。
摘要 - 生活系统既面临环境复杂性,又面临着有限的自由能资源的访问。在这些条件下的生存需要一个可以在上下文中激活或部署可用的感知和行动资源的控制系统。在本第I部分中,我们介绍了自由能原理(FEP)和主动推断作为贝叶斯预测的想法 - 最小化,并显示控制问题是如何在主动推理系统中产生的。然后,我们回顾FEP的经典和量子公式,前者是后者的经典限制。在随附的第二部分中,我们表明,当系统描述为执行由FEP驱动的主动推理时,它们的控制流系统总是可以表示为张量网络(TNS)。我们展示了如何在量子拓扑神经网络的一般框架内实现TNS作为控制系统,并讨论了这些结果对在多个尺度上对生物系统进行建模的含义。
操作员的表现高度依赖于显示器和控件的位置和排列。精心设计的界面会考虑显示器和控件的定位和分组以及它们之间的关系。显示排列应允许操作员以最小的努力检测和识别关键显示信息。此信息需要与影响显示器捕获的系统功能的适当控件轻松关联。控件应位于易于访问且可以舒适操作的位置。为了实现这些目标,显示和控件排列需要根据感知、响应选择、运动控制、人体测量学和生物力学的原理进行设计。自人为因素和人体工程学作为一个独特领域出现以来,人们一直在研究显示器、控件及其关系。因此,人们对影响不同显示控制配置性能的因素了解很多,并且已经制定了许多反映这些知识的指南。此外,已经对刺激-反应兼容性及其相关影响进行了大量研究,可以从中提出建议
由于适应当地环境和土壤条件,非洲 Oryza glaberrima 和 Oryza sativa 地方品种被视为育种性状的宝贵资源。与“进口的”高产亚洲水稻品种相比,它们通常具有对地方性害虫的卓越抗性以及对干旱和营养缺乏的耐受性。相比之下,这些非洲地方品种的“驯化性状”如落粒、倒伏和种子产量尚未得到很好的确立。因此,这些非洲品种在高产农业中的应用受到产量和谷物质量不可预测的限制。我们正在通过开发遗传转化非洲地方品种的协议来解决这一缺点,以便使用 CRISPR-Cas 介导的育种方法。在这里,我们使用栽培的非洲地方品种 Kabre 作为概念验证,以针对选定的已知“驯化位点”并提高 Kabre 水稻的农学潜力。使用基于 CRISPR-Cas9 的载体进行稳定的遗传转化可产生单个和同时多个基因敲除。通过破坏 HTD1 基因,产生了身高降低以减少倒伏的植物。此外,使用多重 CRISPR-Cas9 构建体靶向了三个显示控制种子大小和/或产量的基因座( GS3 、 GW2 和 GN1A )。这产生了种子产量显著提高的突变体。我们的研究提供了一个例子,说明新育种技术如何加速高产非洲地方水稻品种的开发,考虑到非洲是全球人口增长的热点地区,因此容易出现粮食短缺,这是一个重要的进步。