背景和目标:最近,提出了一种基于稳态视觉诱发电位(SSVEP-BCI)的很有前途的脑机接口,它由两个刺激组成,这两个刺激一起呈现在受试者的视野中心,但在不同的深度平面(景深设置)。因此,用户可以通过转移眼球焦点轻松地选择其中一个。然而,在这项工作中,EEG 信号是通过放置在枕骨和顶骨区域(头发覆盖的区域)的电极收集的,这需要较长的准备时间。此外,该工作使用了低频刺激,这会产生视觉疲劳并增加光敏性癫痫发作的风险。为了提高实用性和视觉舒适度,本研究提出了一种基于景深的 BCI,使用从发际线以下区域(耳后)测量的高频 SSVEP 响应。
背景和目标:最近,提出了一种基于稳态视觉诱发电位(SSVEP-BCI)的很有前途的脑机接口,它由两个刺激组成,这两个刺激一起呈现在受试者的视野中心,但在不同的深度平面(景深设置)。因此,用户可以通过转移眼球焦点轻松地选择其中一个。然而,在这项工作中,EEG 信号是通过放置在枕骨和顶骨区域(头发覆盖的区域)的电极收集的,这需要较长的准备时间。此外,该工作使用了低频刺激,这会产生视觉疲劳并增加光敏性癫痫发作的风险。为了提高实用性和视觉舒适度,本研究提出了一种基于景深的 BCI,使用从发际线以下区域(耳后)测量的高频 SSVEP 响应。
条码扫描器光学元件 光源:冷白色照明 LED 扫描方法:CMOS 区域传感器,640 x 480 像素 扫描速率:高达 120 fps 触发模式:手动、自动触发 读取俯仰角:360° 读取倾斜角:± 15° 读取倾斜角:360° 曲率:R ≥ 20 mm (UPC) pcs 0.9 时的最小分辨率:0.2 mm / 7.87 mil 最小。 pcs 值:0.2 视野:水平 74˚,垂直 60˚ 代码 39 的景深:5 - 70 毫米 (0.127 毫米) / 0.19 - 2.76 英寸 (5 mil) 5 - 110 毫米 (0.254 毫米) / 0.19 - 4.33 英寸 (10 mil) 30 - 135 毫米 (0.508 毫米) / 1.18 - 5.31 英寸 (20 mil) 代码 EAN13 的景深:5 - 145 毫米 (0.33 毫米) / 0.19 - 5.71 英寸 (13 mil) 代码 QR 码的景深:0 - 37 毫米 (0.169 毫米) / 0.59 - 1.46 英寸 (6.7 mil) 0 - 105 毫米 (0.381毫米)/0 - 4.13 英寸(15 密耳)
放大倍数................................................................ 0.16X NA................................................................... 0.005 分辨率.............................................................. 15.0 lp/mm 景深................................................................... 23 mm 视野*.............................................................. 41 x 55 mm 工作距离.............................................................. 490 mm
生物医学光学是研究生物光与物质相互作用的学科,其总体目标是开发可用于诊断、治疗和外科手术的传感平台 [1]。在这个庞大而活跃的研究领域中,新系统不断被开发出来,以利用独特的光与物质相互作用来提供临床有用的特征。这些系统在信噪比 (SNR)、采集速度、空间分辨率、视场 (FOV) 和景深 (DOF) 方面面临固有的权衡。这些权衡会影响临床系统的成本、性能、可行性和整体影响。生物医学光学开发人员的作用是设计优化或理想地克服这些权衡的系统,以适当地满足临床需求。在过去的几十年里,生物医学光学系统设计、图像形成和图像分析主要由经典的物理建模和信号处理方法指导。然而,最近,深度
复眼 (CE) 是一种先进的光学视觉系统,具有大视场、无限景深和动态成像能力等显著特点,在机器人视觉、无人机检测和医学诊断等应用领域展现出巨大潜力。与主要由多摄像机阵列组成的宏观 CE 相比,紧凑型集成 CE 因其便携性以及可与微型机器人和体内医疗设施灵活集成的可能性而备受关注。到目前为止,人们已经在这个领域投入了相当大的努力,其中制造技术对于开发能够进行大视场成像、深度信息收集和三维成像的人工 CE (ACE) 至关重要。先进 ACE 的实际应用面临挑战和机遇。本文回顾了制造 ACE 的最新技术,然后简要总结了它们在不同领域的潜在应用。最后,讨论了 ACE 当前面临的挑战和前景。
条形码扫描仪光学源:冷的白色照明LED扫描方法:CMOS区域传感器,640 x 480像素扫描速率:最高120 fps触发模式:手动,自动触发角度,阅读音高:360°读取倾斜倾斜:±15°读取倾斜角度:±15°阅读倾斜角度:360°curvature:rupcature:rupcature:rupcature:r c)(r c)。在PCS 0.9:0.2 mm / 7.87 mil min处的分辨率。PCS值:0.2视野:水平74˚,代码39:10-75毫米(0.127 mm) / 0.39-2.95英寸(50万)10-115 mm(0.254 mm) / 0.39-0.39-4.53 IN(10 mil)30-140 mm(0.53代码EAN13:10-150毫米(0.33毫米) / 0.39-5.91英寸(13 mil)code QR代码的景深:0-42毫米(0.169 mm) / 0.59-1.59-1.57 in(6.7米)0-110 mm(6.110 mm(0.381 mm)(0.381 mm) / 0-4.53英里 / 0-4.53 in(15-4.4.53 in(15米)< / div>
摘要:随着集成电路技术的发展,特别是进入亚微米工艺之后,关键尺寸的缩小和高密度器件的实现,集成电路材料层之间的平整度变得越来越关键。因为传统的机械抛光方法不可避免地会在金属甚至电介质层中产生与器件相同尺寸的划痕,导致光刻中的景深和聚焦问题。第一个实现应用的平坦化技术是旋涂玻璃(SOG)技术。但是该技术不仅会引入新的材料层,而且无法达到VLSI和ULSI技术所要求的整体平坦化。而且旋涂过程中的工艺不稳定性和均匀性无法满足晶圆表面的高平坦度要求。而一些技术如反向刻蚀和玻璃回流虽然可以实现亚微米级的区域平坦化。当临界尺寸达到0.35微米(亚微米工艺)后,上述方法已不能满足光刻和互连制造的要求.20世纪80年代,IBM首次将用于制造精密光学仪器的化学机械抛光(CMP)技术引入到DRAM制造中[1].随着CMP技术的发展,DRAM的制造工艺也发生了巨大的变化.