每个生命周期步骤对总GWP的影响取决于研究中所包含的步骤。通常,生产分解为2个子步骤,这是原材料提取和电池的产生([9] - [12]),或者是整体考虑的([13],[14])。对于寿命末而存在相同的现象:可以将其整体思考或分解为2个步骤,它们正在回收和终止寿命。使用阶段包括用于电池操作,维护和电池更换的电力([8],[13],[14])。在这些步骤之间,研究了不同的运输路径:第一个是制造步骤之间的运输([9],[14]),第二个是生产地点和车辆组装现场之间的运输([5],[15])。
固态准则的异常结构特性到目前为止已经建立了良好,在第一个出版物之后超过四分之一以上[1]。最好通过标准的结晶方法获得的最佳准甲基盐样品在非常狭窄的,可降低的差异峰上得到了完美的序列。在没有翻译不变性的情况下,准晶体可以具有禁止晶体的旋转对称性,例如5倍或在当前情况下为8倍对称。准晶体中local环境的重复性的特性可确保原子的相同有限的配置彼此近似。准晶体在长度尺度的变化方面具有自相似性。这些特性导致人们期望这些物质中的新物理特性,实际上,它们被认为具有有趣的电子,磁性和机械性能。不幸的是,对这些材料的理论理解落在了实验发现后面,部分原因是固态准晶体通常是双合金或三元合金。它们的结构复杂性使得无法使用分析方法,并且将数值计算扩展到极限。因此,实现单个组件的准物质是一个长期的目标。我们最近展示了[2]如何使用四个固定波激光场引起的光势来捕获颗粒,并实现具有八倍符号的二维式准二维结构。当被困颗粒为原子时,de-在本文中,我们提供了该结构的详细信息,即8倍的Quasicrystal,它与众所周知的八角形(或Ammann-Beenker)瓷砖固定器[3]密切相关。
增材制造使复杂结构得以制造。粉末床熔合(PBF)是制造具有高度可控几何形状的复杂结构的代表性AM技术。它涉及选择性激光熔化(SLM)、选择性激光烧结(SLS)和电子束熔化(EBM),具体取决于热源和原材料。材料类型、拓扑类型、几何特征和工艺参数对PBF结构力学性能的影响至关重要。此外,通过拓扑优化获得的大多数声学/光学/机械超材料都可以通过PBF样品实现,相关的设计原理和实施方案。此外,PBF制造的复杂部件的可靠性对于实际应用至关重要,这主要与长期使用性能有关。以上所有内容以及PBF的其他相关内容将是拟议专刊的主题。欢迎为PBF研究提供分析、数值和实验技术的投稿。
图1:(a)TPC的几何形状以及相互空间和相关的高对称点的表示。(b)每个原始细胞内两个孔的TPC的分散图(黑色)或不同的(红色)半径1和R 2。(c)浆果曲率和山谷Chern数模拟了为疾病的TPC(r 1 = 180 nm和r 2 = 80 nm)。(d)边缘模式的色散曲线(实心蓝线)沿着胡须界面在两个半偶然的镜像对称TPC之间,平行于γk方向(浅蓝色背景表示投射的散装模式)。实心红线显示无限TPC的分散曲线。插图比较界面的FBZ(厚蓝线与长度为2π/b 0)和无限TPC的FBZ。(e)模拟(左图)中使用的典型单元电池和边缘模式的磁场振幅的分布(右图)。
功能材料是一种先进的工程材料,具有多种特性。由于其优异的性能,包括磁性能、电性能和光学性能、大的比表面积和卓越的机械性能,功能材料被广泛应用于信息、工程、医学和空间应用等各个领域。对于这期特刊,我们想邀请从事晶体和新型薄膜生长和开发、外延、涂层、界面和表面分析、表面表征、相关特性研究和生长材料(包括薄膜、晶体和纳米结构)的研究人员投稿。本期特刊欢迎原创研究文章和评论。感兴趣的主题可能包括但不限于以下内容: - 功能材料的合成方法; - 晶体的生长; - 薄膜、涂层或结的沉积; - 特性的工程和调制; - 材料表征方法。
增材制造,又称快速成型,已经彻底改变了聚合物材料部件的生产。增材制造技术的新发展为行业提供了使用各种金属合金、陶瓷和复合材料制造结构部件的能力。金属增材制造工艺的引入彻底改变了工业领域金属部件的生产,其中复杂的几何形状、有机形状、管状、空心设计和致密的晶格填充结构起着决定性的作用。然而,存在一些问题限制了金属增材制造的更广泛采用和利用。这些问题与缺乏设计和建模技能和增材制造软件、使用相同技术但不同机器获得的不同特性、难以完美模拟过程、对零件质量变化原因的理解不完全以及过程的可重复性有关。本期特刊旨在收集金属增材制造的材料供应、零件设计、工艺建模、工艺技术、后处理和应用领域的完整论文和评论。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
基于半导体过渡金属二分法的晶体管可以提供高载体的迁移率,强旋转 - 轨道耦合以及在量子接地状态下固有强的电子相互作用。这使它们非常适合在低温下用于纳米电子产品。然而,在低温温度下与过渡金属二甲基化金属层建立强大的欧姆接触非常困难。因此,无法达到费米水平靠近带边缘的量子极限,从而探测了分数填充的Landau级级别中的电子相关性。在这里我们表明,使用窗户接触技术可以在从Millikelvins到300 K的温度范围内创建与N型钼二硫化物的欧姆接触。我们观察到超过100,000 cm 2 v -1 s -1的场效应,在低温下的传导带中,超过3,000 cm 2 v -1 s -1的量子迁移率超过3,000 cm 2 v -1 s -1。我们还报告了在最低的双层钼二硫化物中,填充4/5和2/5的分数量子厅状态的证据。