摘要 — 在本文中,我们介绍了一种 TM 偏振 C 波段的一维光子晶体条带波导 (1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准 CMOS 技术即可轻松实现。通过 3D 有限元法 (FEM) 进行了数值研究。通过优化器件的几何参数,提高了透射率和偏振消光比 (PER)。因此,TM 偏振光可以在波导中传播,在整个 C 波段电信波长窗口内损耗约为 2 dB,而 TE 偏振光的传输损耗高达 >30 dB。因此,在整个 C 波段波长范围内可获得 ~28.5 dB 的 PER。所提出的器件的总长度约为 8.4 µm,包括两端的 1 µm 硅条带波导段。基于本文的研究,可以实现需要严格偏振滤波的多种光子器件。
Bharathidasan大学于1982年2月成立,并以伟大的革命泰米尔诗人巴拉蒂达桑(Bharathidasan)(1891-1964)的名字命名。大学的座右铭是“我们将创造一个勇敢的新世界”是由Bharathidasan的诗歌单词“புதியதபுதியத”所构成的。除了行政综合体外,包括副校长的秘书处,注册办公室,财务和考试办公室,大多数学术部门和研究实验室都位于庞大的Palkalaiperur校园中。Palkalaiperur校园中的学术单元是数学,物理,化学,生命科学,基础医学,地球科学,社会科学,海洋科学,海洋科学和语言学校的学校。此外,校园还设有中央图书馆,大学信息学中心,旅馆,员工宿舍,卫生中心,食堂等。Khajamalai的市区校园设有社会工作,计算机科学,遥感,地质,统计,妇女研究,教育技术,终身学习,Malaviya Mission教师培训中心等。该大学拥有4个学院,16所学校,39个部门和29个专业研究中心。大学系/学校提供151个课程,包括M.A.,M.Sc。的40个PG计划。和M.Tech,31 M.Phil。,33 Ph.D.,19p.g.文凭,11个文凭和10张证书。除了在部门和学校的常规教学计划外,其远程教育模式下的大学还进行了15 ug和26个PG计划。
芯片尺度多模光力系统具有相对于单模对应物的传感,计量和量子技术具有独特的好处。插槽模式光力晶体可实现单个光学腔的侧带分辨率和两个微波频率机械模式的大型光学机械耦合。仍然,以前的实现仅限于纳米束几何形状,在超高温度下,其有效的量子合作受到其低热电导率的限制。在这项工作中,我们设计和实验表明了二维机械 - 光学机械(MOM)平台,该平台可分散地构造出缓慢的光子引导的光子光子 - 晶波导模式和两个慢速〜7 GHz语音电线模式在物理上不同区域中定位于物理不同的区域。我们首先在长波导部分中展示了光学机械相互作用,揭示低于800 m/s的声学群速度,然后转到具有量身定制的机械频率差的模式差距绝热异质结构腔。通过光力光谱法,我们证明了光学质量因子Q〜10 5,真空磁力耦合速率,G o /2π,1.5 MHz为1.5 MHz,以及除了单模图片以外的动态反作用效应。在较大的功率和足够的激光腔内失调时,我们证明了涉及单个机械模式的再生光学振荡振荡,通过调制输入激光驱动器以其频率差的调制,将两种机械模式扩展到两种机械模式。这项工作构成了对工程MOM系统的重要进步,该系统几乎是退化的机械模式,这是混合多部分量子系统的一部分。
原子质波的干涉法是基础科学1-5的必不可少的工具,对于应用的量子传感器6-10。干涉仪尺度的敏感性随衍射物质波的动量分离而导致大动量传递束分裂器的发展11,12。然而,尽管进行了数十年的研究,但对于动量转移13,由于第一个原子衍射实验以来使用的结晶光栅仍然是无与伦比的。到目前为止,仅报道了亚原子颗粒的衍射,但从未针对原子。在这里,我们通过在正常入射率下通过单层石墨烯证明了氦气和氢原子在基尔洛克素伏元能的衍射,以回答这一百年历史的挑战。尽管原子的高动能和与石墨烯电子系统耦合,但我们观察到衍射模式具有多达八个相互晶格向量的相干散射。衍射是可能的,从而限制了动量转移到光栅上。我们的演示是Thomson和Reid 14,15的第一次传输实验的原子对方,从而解开了原子衍射中的新电位。我们希望我们的发现能够激发未知能源制度中的破坏性研究以及新的基于物质波的传感器的发展。
摘要 时间平移对称性破缺是马尔可夫开放量子系统中非稳态多体相(即时间晶体)出现的一种机制。近年来,人们对时间晶体的动力学方面进行了广泛的探索。然而,人们对它们的热力学性质知之甚少,这也是由于这些相的内在非平衡性质。在这里,我们考虑了有限温度环境中的典型边界时间晶体系统,并证明了时间结晶相在任何温度下的持久性。此外,我们还分析了该模型的热力学方面,特别是热流、功率交换和不可逆熵产生。我们的工作揭示了维持非平衡时间结晶相的热力学成本,并提供了一个框架来描述时间晶体作为量子传感等可能的资源。由于我们将热力学量与集体(磁化)算子的平均值和协方差联系起来,所以我们的结果可以在实验中得到验证,例如使用捕获离子或超导电路。
光电化学过程对于许多清洁能源生产方法至关重要。出于这种目的,相关电极通常是通过污染添加剂和有毒溶剂来制造的。以一种可持续的方式设计有效的电极是基本的利益。因此,需要无毒和绿色的水性分散剂,为此,纳米纤维素表现出有希望的可持续性和成本效益的前景。在这里,我们将纤维素纳米晶体与TIO 2纳米颗粒结合使用,不仅是可再生原材料,而且还以突破性的方式构成功能光轴。这些电极能够进行光电化学水分分裂,由于纳米纤维素的作用,比商业TIO 2基准更有效,这超出了分散剂。我们的方法论涉及负责任消费和生产的重要方面(UN SDG 12),about and about and Clean Energy(UN SGD 7)和气候行动(UN SDG 13)。
1 宾夕法尼亚大学工程与应用科学学院生物工程系,美国宾夕法尼亚州费城 19104 2 宾夕法尼亚大学佩雷尔曼医学院精神病学系,美国宾夕法尼亚州费城 19104 3 加利福尼亚大学心理与脑科学系,美国加利福尼亚州圣巴巴拉 93117 4 陆军研究实验室,阿伯丁试验场,马里兰州 21005 5 宾夕法尼亚大学艺术与科学学院物理与天文系,美国宾夕法尼亚州费城 19104 6 宾夕法尼亚大学工程与应用科学学院电气与系统工程系,美国宾夕法尼亚州费城 19104 7 宾夕法尼亚大学佩雷尔曼医学院神经病学系,美国宾夕法尼亚州费城 19104 8 圣达菲研究所,新墨西哥州圣达菲 87501 ∗ 任何通信均应寄给作者。
非线性光子晶体是具有二次非线性(χ(2))的微结构,它们已广泛用于新频率下相干光的生成和控制。由于最近使用飞秒激光脉冲的3Dχ(2) - 非线性工程技术的发明,现已在实验上是可行的。在这里,我们回顾了非线性光子晶体的最新研究进展,尤其集中在3D结构的制造,表征和应用上。我们还讨论了3D非线性光子晶体的未来发展,其性质和功能是很难或几乎无法通过较低的尺寸结构实现的。©2021美国光学协会根据OSA开放访问出版协议的条款
硅电池的输出电压较小,一个电池的输出电压约为 0.6 V。要达到 24 V 的输出电压,至少需要 40 个电池。CPV GaAs 电池的电压大约高出 4 倍。一个电池的输出电压约为 3 V。要达到 24 V 的输出电压,只需要 8 个电池。达到所需电压所需的电池数量越少,CPV 面板的可靠性就越高。
增材制造,又称快速成型,已经彻底改变了聚合物材料部件的生产。增材制造技术的新发展为行业提供了使用各种金属合金、陶瓷和复合材料制造结构部件的能力。金属增材制造工艺的引入彻底改变了工业领域金属部件的生产,其中复杂的几何形状、有机形状、管状、空心设计和致密的晶格填充结构起着决定性的作用。然而,存在一些问题限制了金属增材制造的更广泛采用和利用。这些问题与缺乏设计和建模技能和增材制造软件、使用相同技术但不同机器获得的不同特性、难以完美模拟过程、对零件质量变化原因的理解不完全以及过程的可重复性有关。本期特刊旨在收集金属增材制造的材料供应、零件设计、工艺建模、工艺技术、后处理和应用领域的完整论文和评论。