本论文的目的是研究使用 ECR(电子回旋共振)氢等离子体技术的低温原位清洗工艺和使用 HF 浸渍法的原位清洗工艺,用于低温硅同质外延生长。在 MS-CVD(多室化学气相沉积)反应器上安装了负载锁室,以降低将污染物引入系统的可能性。选择 ECR 等离子体系统是因为与传统的 RF(射频)系统相比,它可以以良好调节的方式输送更高密度的低能离子。选择氢气是因为氢气质量轻,并且能够与表面污染物发生化学反应。在原位清洗的晶圆顶部沉积外延层,并通过 XTEM(横截面透射电子显微镜)和 RBS(卢瑟福背散射光谱)技术研究外延层和外延层/衬底界面的结构质量。使用 SIMS(二次离子质谱)检测界面处的氧和碳污染物。
用于 mmWave 封装测试的 xWave 平台 • 信号完整性 – 短阻抗控制共面波导 (CPW) – 测试仪和 DUT 之间的 1 个转换(连接器到引线框架) – DUT 球接触 CPW • 集成解决方案(PCB/接触器合一) – 包括从测试仪到 DUT 的完整 RF 路径 – 用于电源和控制信号的 Pogo 引脚 • 生产封装测试解决方案 – 坚固的引线框架可持续数百万次循环 – 机械组装完全可现场维护 – 包括校准套件(s 参数) – 用于三温测试(-55 至 155°C)的 CTE 匹配材料
范围和章节大纲 本章旨在简要概述晶圆级封装 (WLP),包括晶圆级芯片规模封装 (WLCSP) 和扇出型封装,作为这些技术未来发展路线图的背景。本文并非旨在提供详细的历史,也不是与这些技术相关的所有可能的结构、工艺和材料的详细描述。在有关该主题的各种文章和书籍中可以找到更详细的信息。本章试图回顾 WLP 技术迄今为止的发展,并预测未来的需求和挑战。 晶圆级封装是指在晶圆仍为晶圆时对芯片进行封装,可以单独封装,也可以与其他芯片或其他组件(例如分立无源器件)或功能组件(例如微机电系统 (MEMS) 或射频 (RF) 滤波器)组合封装。这允许使用异构集成进行晶圆级和面板级封装。尽管从定义上讲,WLP 历来都是使用直径为 200 毫米或 300 毫米的圆形晶圆格式生产的,但多家供应商正在将类似的制造方法扩展到矩形面板格式。这将允许不仅在晶圆级基础设施(晶圆级封装,或 WLP)上制造异构封装,而且还可以在面板级基础设施(面板级封装,或 PLP)上制造异构封装。本章将包括异构集成路线图 (HIR) 的 WLP 和 PLP 格式。本章分为 7 个部分:1. 执行摘要 2. 晶圆级封装的市场驱动因素和应用 3. 晶圆级封装概述:技术、集成、发展和关键参与者 4. 技术挑战 5. 供应链活动和注意事项 6. 总结、最终结论和致谢 7. 参考文献
半导体行业是新加坡的主要制造业之一;占2014年制造总价值的17.6% - 该行业雇用了3600名工人,约占电子劳动力总数的53%。今天,新加坡是世界上三大晶圆铸造厂的所在地,全球四家顶级外包组装和测试服务公司,以及世界上9家顶级女装的半导体公司。其中一些公司包括Broadcom,NXP,Mediatek,Micron Semiconductor Asia PTE Ltd,United Microelectronics Corporation,STATS CHIPPAC,QUAPCOM,Qualcomm和Silicon Manufacturing Company的系统。在2013年,我们的晶圆厂每月生产约100万个晶圆,在全球范围内约有10个晶圆的晶圆。工作详细信息:
根据与诺斯罗普·格鲁曼公司的协议,合作者将有一段预定的时间(“设计期”),使用诺斯罗普·格鲁曼公司提供的模型和 PDK 进行设计。设计期结束后,合作者需要在规定的截止日期前向代工厂提交设计,以便将其设计纳入工厂运行。合作者还需要提交其设计和文档,以便在 STARRY NITE IP 存储库中存档。一旦掩模完成流片,诺斯罗普·格鲁曼公司将使用该掩模制造晶圆。请注意,诺斯罗普·格鲁曼公司不会对电路进行直流或射频测试;整个工厂流程中都会测量掩模上的过程控制监视器 (PCM) 结构。b. 合作者同意公布设计提交和掩模流片时间表。c. 请注意,美国政府对哪些设计将投入生产拥有最终决定权
关键词:GaN、焊料、AuSn 焊料、溅射、共晶、芯片粘接摘要对于 GaN MMIC 芯片粘接,经常使用 80%Au20%Sn 共晶焊料。通常的做法是使用预制件 AuSn 将芯片粘接到 CuW 或其他一些基板上。在此过程中,操作员可能需要将预制件切割成芯片尺寸,然后对齐预制件、芯片和基板。由于操作员需要同时对齐三个微小部件(预制件、芯片和基板),因此这是一个具有挑战性的过程,可能需要返工。此外,预制件厚度为 1mil(在我们的例子中),这可能导致过量的焊料溢出,需要清理,因为它会妨碍其他片外组装。整个芯片粘接过程可能很耗时。在本文中,我们描述了一种在分离芯片之前在 GaN 晶圆上使用共晶成分溅射靶溅射沉积共晶 AuSn 的方法。它消除了预制件和芯片的对准,并且不会挤出多余的 AuSn。通过使用共晶溅射靶,它还可以简化靶材制造。下面给出了芯片粘接结果。引言宽带微波 GaN MMIC 功率放大器在国防和通信应用中具有重要意义。随着设备性能的提高,芯片粘接变得非常重要,因为它会极大地影响 MMIC 的热预算。80%Au/20%Sn 焊料已用于半导体应用超过 50 年,通常作为冲压预制件。然而,由于需要将 MMIC 芯片中的多个小块和焊料预制件对准到载体上,因此芯片粘接过程可能很繁琐且耗时。在芯片分离之前在整个晶圆上溅射沉积 AuSn 将大大简化芯片粘接过程。然而,溅射的 AuSn 成分对于正确的焊料回流至关重要。由于 Au 和 Sn 的溅射产率不同,AuSn 溅射靶材的化学性质和沉积的 AuSn 薄膜之间存在显著的成分变化 [参考文献 1]。下图 1 显示了 Au-Sn 相图。通过仔细控制溅射参数(功率、压力和氩气),我们能够从共晶成分溅射靶中沉积共晶 AuSn。制造共晶成分溅射靶要容易得多/便宜得多。
SEMI E62 描述了 FOSB 开门装置的特性和基本功能。E62 是针对设备配置的非常具体的标准,包括定位销、密封区域和锁销形状、位置、运动和扭矩。300 毫米 FOSB 必须与这些功能配合使用,但精确的配合功能尺寸、位置和设计由载体制造商决定。与 E62 FOSB 开门器配合的 FOSB 功能由 Entegris 设计规范定义。一般而言,这种兼容性涉及 E62 FOSB 开门器功能周围的适当间隙和相对位置。
摘要在这项研究中,提出了对低热稳定性临时粘合胶的优化对物理蒸气沉积(PVD)过程的优化。在各种底物上证明了Cu种子层在通过沟渠中的沉积:硅 - 硅粘合,硅玻璃键合和霉菌键合的底物。在处理过程中记录在这些底物上的表面温度远低于临时键合和去键(TBDB)材料的临界温度。本文重点介绍了PVD工艺的2.5D/3D集成电路(IC)包装中通过硅VIA(TSV)应用的创新。这些结果将在温度较低的范围明显较低的温度范围内稳健地整合具有低热稳定性的各种临时粘合粘合剂,其热稳定性低。引言临时键合和键合材料在实现薄和超薄晶圆底物的处理方面起着重要的中间作用。它为稀薄的Si Wafers提供结构和机械支撑,用于下游包装。这是因为在下游制造步骤期间,薄且超薄的基材具有高弯曲,折叠和有时断裂的趋势。因此,需要借助临时粘合粘合剂来支撑这些稀薄的底物在载体底物上[1]。这允许晶圆进行进一步的过程步骤,例如光刻,沉积等。设备晶圆通常与临时粘合涂层接触以进行支撑。在PVD过程中,金属靶标通过碰撞的热过程转化为原子颗粒。物理蒸气沉积(PVD)是TSV 2.5D/3D IC包装中铜的随后电化学沉积的关键过程步骤。这是一种以平滑表面,出色的机械性能以及对目标底物的良好粘附而闻名的先进材料处理技术。然后将这些颗粒定向到基板上,以在受控的真空环境中进行后续沉积,成核和生长。原子然后将其凝结成在底物上形成物理薄膜。这可以以两种方式进行:溅射和蒸发。在溅射过程中,将气态前体引入反应室,然后将其加速向目标加速,释放原子尺寸的颗粒以沉积到基板上。溅射技术的主要优点是由于加速
厚膜/薄膜基板和印刷电路板的加工 所有组装元件的可追溯性 焊膏检测 (SPI) 和元件检测 (AOI) 从 01005 组装 SMD 元件 从晶圆或华夫饼封装组装 COB 或倒装芯片 回流焊接和真空焊接 无铅和含铅焊料加工 使用绝缘和导电粘合剂进行键合 球/楔和楔/楔引线键合 12.5 µm 至 500 µm 带状键合 球顶封装、灌封和密封封装 激光成型 激光打标