X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
X. Ma, H. Bin, BT van Gorkom, TPA van der Pol, MJ Dyson, CHL Weijtens, SCJ Meskers, RAJ Janssen, GH Gelinck 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 电子邮件: rajjanssen@tue.n l M. Fattori 电气工程系 埃因霍温理工大学 PO Box 513, Eindhoven 5600 MB, 荷兰 AJJM van Breemen, D. Tordera, GH Gelinck TNO/Holst Center High Tech Campus 31 Eindhoven 5656 AE, 荷兰 瓦伦西亚 C/ Chair of J. Beltran 2, Paterna 46980, 西班牙 RAJ Janssen 荷兰基础能源研究所 De Zaale 20, Eindhoven 5612 AJ, 荷兰
光电倍增探测器有望克服有机短波红外光电探测器的低响应度。然而,最近的光电倍增探测器通常会同时增加响应度和暗电流,从而抵消对探测率的影响。为了抑制光电倍增装置中的暗电流,我们提出了一种新的夹层结构,即一种克服信号和噪声之间权衡的 pn 结组合。与使用典型单极电荷传输材料的设备相比,我们的双层设计具有降低暗电流和出色外部量子效率的优势。我们将这种新的夹层设计融入上转换成像器中,使上转换效率和图像对比度翻倍。这种夹层可推广到不同的有机半导体,这尤其有用,因为这里的设计将适用于尚未发现的未来红外材料。
与传统体硅相比,绝缘体上硅(SOI)衬底具有许多优势,包括低漏电流、低电容、低功耗、更好地抵抗短沟道效应(SCE)和卓越的缩放能力[1 – 4]。这使得SOI衬底不仅适用于传统的MOSFET,而且由于天然的衬底隔离[5 – 8]和更简单的多栅极设计,它也对新型半导体器件具有吸引力,例如TFET和Z2-FET。此外,建立在SOI平台上的光电探测器(PD)也表现出优异的光电性能。高工作速度、高抗辐射和低寄生电容的优势使基于SOI的PD在电子和光子集成电路(EPIC)、光通信系统和航空航天等许多应用领域中极具竞争力[9 – 16]。为了在 SOI 薄膜中形成 pn 光电二极管,通常使用常规离子注入来掺杂 Si 沟道 [17]。然而,离子注入会损坏并降低 Si 的质量,这个问题在缺乏种子层以促进再结晶的超薄 SOI 薄膜中尤其严重。此外,用于激活掺杂剂的高温退火可能会引起应力和损坏,并进一步降低器件的性能。为了克服这些缺点,可以使用电场诱导的静电掺杂 [18,19] 来形成 pn 结并完全避免离子注入。之前,我们已经证明在