我们的管理团队知道,我们必须与资本合作伙伴保持一致的那一天,我们知道找到合适的小组来支持我们的增长愿景,同时继续培养独特的iOS文化并不是一件容易的事。我们通过推荐与TM Capital领导能力,从第一天开始,他们努力理解我们的需求。在所有过程中都有曲折,但是TM Capital在帮助我们保持优先级的工作方面做得很好,我们的团队专注于手头的任务。最后,我们的过程是一个非常有竞争力的过程,许多潜在的资本伙伴追求与我们的业务和人民合作的机会。在TM Capital的指导下,我们努力做出正确的选择。在Frontenac中,我们找到了一个伴侣,该合作伙伴包含了我们对成长的雄心勃勃的愿景,并了解我们永远成为以人为本的组织的愿望。
Jeff Cicolani 目前与妻子、两只狗和十几个机器人住在德克萨斯州奥斯汀。他目前是一名嵌入式系统工程师,为奥斯汀的一家 AI(人工智能)公司构建机器人和自动化平台。他的机器人之路走得非常曲折,走过了一条奇怪的职业道路,包括系统分析和设计以及数据库编程。2012 年,他加入了奥斯汀的 The Robot Group,在那里他加入了一群机器人爱好者,并开始将构建机器人作为爱好。2016 年,他成为 The Robot Group 的总裁。在这个职位上,他带领团队通过机器人技术促进 STEM(科学、技术、工程和数学)教育。他目前正致力于通过 ROS(机器人操作系统)和机器学习来加深对高级机器人技术的理解。
这项工作的目的是对受冲击载荷的六角硼核晶格中的精细结构参数和能量散射通道进行彻底分析。这种外部影响会导致材料中的冲击波形成。已经表明,可以通过在正常的方向上向单个原子行给出初始脉冲来启动冲击波。同时,此类初始条件与稳定的冲击波曲线不符,但在足够短的过渡期约为0.1 ps后形成。已经表明,所研究材料中的冲击波只能在两个晶体学方向(即曲折和扶手椅方向)传播。在所有情况下,冲击波传播的速度比所研究材料中的声音速度快。已经研究了冲击波传播的机制。我们已经揭示了锯齿形方向冲击波的传播与最小的能量损耗有关。我们发现冲击波传播期间材料中能量耗散的主要机制是键长和键角振荡。
在这项工作中,基于石墨烯的纳米结构(GBN)的纵横比的影响以及含量对3 mol%Yttria tetragonia Zirconia polycrystalline 3y-TZP基质复合材料的机械性能的影响。研究了分散法和烧结参数对复合材料的弯曲强度和弹性模量的影响,并将断裂表面表征以确定发生的断裂机制。结果表明,少量的去角质石墨烯纳米片,横向尺寸降低,较少的层石墨烯,最高为1.0和2.5 vol%,略微增加了3y-tzp的弯曲强度。这归因于裂纹传播途径和加强机制的曲折性。较高的含量会导致弯曲强度和刚度的降低,这可以促进裂纹传播。在具有非剥落石墨烯纳米片的复合材料中,GBN的拉出更为显着,在该复合材料中,未测量弯曲或双轴强度的增加。
归因于视网膜病变,但脉络膜病变可能在视觉功能的改变中具有自己的作用。Hidayat和Fine 3引入了“糖尿病性脉络膜病”一词,以描述在糖尿病患者脉络膜中发现的组织学病变。典型的病变包括毛细血管内皮的变性,脉络膜毛细血管的变薄和稀疏,层状沉积物,曲折和串珠的Ves-Sels,甚至是脉络膜新壳。4,5在更高级的阶段,有些描述了脉络膜曲霉瘤和扩张的脉络膜血管。3在体内,通过激光多普勒流量指定测量绒毛膜灌注减少。6,7光谱 - 域光学相干断层扫描(OCT-A)允许对视网膜胶丛和脉络膜毛细血管进行非侵袭性成像。8,9糖尿病患者,
开发了同步辐射X射线(SR)分层照相和衍射方法,实现了对智能功率模块(IPM)内部退化行为的无损测量。通过SR分层照相跟踪IPM样品纳米颗粒Cu键合层的疲劳行为表明,大的聚集Cu簇引入了曲折裂纹和裂纹分支,从而降低了裂纹扩展速率,有望延长疲劳寿命。老化过程中的分层照相测量表明,纳米颗粒Cu的氧化是降低键合强度的主要退化模式,通过添加Bi和Sn可以改善键合强度。开发的旋转螺旋狭缝系统实现了IPM样品键合层中的空间分辨衍射测量。利用该技术可以获得IPM中应力和应变的内部分布图。SR分层成像与基于螺旋狭缝的衍射技术相结合将成为下一代IPM可靠性分析的有力工具。
本文介绍了关于大脑供血动脉和 Willis 环 (CW) 模型中的流动的实验结果。血管模型是根据解剖标本准备的。考虑了最典型的动脉形状和尺寸。提供了 6 个特征点的压力分布,以及大脑前部、中部和后部的平均流速。在复制生理状态(即供血动脉完全畅通时)和病理条件下进行了测试,其中颈内动脉和椎动脉在一侧或两侧被阻塞。将所得结果与基于线性和非线性流动模型的计算机模拟结果进行了比较。为了估计血管段的非线性阻力,提出了两个现象学公式。从实验中获得的值与非线性计算机模型中记录的值之间的高度相关性证明了所提公式的实用性。验证了以下假设:血管段的流动特性非线性很大程度上是由其曲折和长度相对于直径较小造成的。非线性效应在供血血管病理性闭塞的情况下尤为明显。
摘要:荧光碳点(CD)近年来引起了越来越多的关注,这是因为它们在低毒性,对光漂白,较小的尺寸,易于功能化,生态友好型合成和多样化成像能力方面的最大优势。但是,CD的不清楚的光学机制极大地限制了其进一步的应用。了解CD的光学特性对于具有功能目的的顶级设计CD的可控开发具有重要意义。在这篇综述中,我们首先总结了CD的光吸收特性,并证明了CD的核心和壳的吸收光谱和电子过渡之间的关系。此外,我们总结了CD的常见荧光机制,包括表面状态,量子限制效应,共轭结构,自被捕的激子,边缘缺陷,自由的曲折位点和多隔音中心。最后,我们还讨论了CD的磷光特性。本综述为如何调整CD的荧光和磷光提供了新的见解。关键词:碳点,光学特性,荧光机制,光吸收分配,磷光
军事上,空间是陆地力量的关键推动力。控制最终的高空比以往任何时候都更有争议。中国,俄罗斯,印度和美国已经测试了能够达到低地球轨道(LEO)的反卫星(ASAT)导弹。5个国家正在追求电子战,定向能源和网络帽质关系,可以暂时或永久禁用卫星或破坏支持太空的服务。6尽管第一次海湾战争被广泛认为是第一个支持太空的冲突,但在公开冲突中,没有一个国家尚未争夺空间。7,因此,空间com bat策略目前依赖于从其他DO的主管,模型和练习中得出的理论基础,而不是具体的历史战斗例子。现实世界中的空间战斗肯定会改变当今的空间策略,但缺乏他的曲折模型使一个彻底而健全的理论背景成为未来太空冲突的至关重要的起点。
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。