核心PWR燃料管理的核心任务是创建负载模式(LP)。在进行许可当局要求的详细设计研究之前,要确保LP的选择符合从安全,运营和其他条件衍生出的限制。同时,经济因素促使操作员发现功率峰值因子(PPF),较长的周期时间和较低的富集以发现燃料排列。这项任务长期以来一直被认为是燃料周期优化的重要组成部分[1] [2]。然而,PWR燃料LPS的组合属性(高维,高非线性,缺乏直接导数信息和多个最小值)描述了一个极为困难的优化问题[3]。一段时间以来,投入的高维度已被认为是一个特殊的问题:“这项工作的主要结论是,重新加载配置设计的基本挑战是由于搜索空间非常大。” [4]
摘要 不同的研究报告了 Vircator 的性能,结果表明模拟和测量的输出峰值功率和辐射频率之间存在很大差异。应用一次一个变量的方法的研究很少。进行全面分析需要在大量实验(模拟或测量)中应用统计方法,这是一个挑战,因为模拟 Vircator 需要大量的计算时间。最近,有人提出了一种替代模型来大幅缩短计算时间。在本文中,我们建议评估 Vircator 的性能变化,同时考虑机械制造公差以及脉冲电源的变化。分析是通过广为传播的随机方法(经典蒙特卡罗、谱技术)和其他灵敏度分析方法进行的。
大肠疾病属由几种物种和神秘的进化枝组成,包括e。大肠杆菌,表现为脊椎动物的肠道共生,也是腹泻和肠外疾病的机会性病原体。为了表征该属内肠外毒力的遗传确定者,我们对代表Escherichia Genus Genus Genologenogencementic多样性的370个共生,致病性和环境菌株进行了一项无偏的基因组研究(GWAS)研究(GWAS)。albertii(n = 7),e。fergusonii(n = 5),大肠杆菌(n = 32)和e。大肠杆菌(n = 326),在败血症的小鼠模型中进行了测试。我们发现,编码Yersiniabactin siderophore的A高致病岛(HPI)的存在与小鼠的死亡高度相关,与其他相关遗传因素相关,也超过了与铁的摄取相关的其他相关遗传因素,例如Aerobactin和Sitabcd operons。我们通过删除e中HPI的关键基因来确认体内关联。大肠杆菌菌株在两个系统发育背景下。然后,我们在E的一部分中搜索了毒力,铁捕获系统和体外生长之间的相关性。大肠杆菌菌株(n = 186)先前在生长条件下表型,包括抗生素以及其他化学和物理胁迫。我们发现,在存在大量抗生素的情况下,毒力和铁捕获系统与生长呈正相关,这可能是由于毒力和耐药性的共选择。我们还发现在存在特定抗生素的情况下毒力,铁摄取系统与生长之间的负相关性(i。e。头孢霉素和毒素),这暗示了与内在毒力相关的潜在“侧支敏感性”。这项研究表明铁捕获系统在大肠疾病的肠外毒力中的主要作用。
替代辅助进化算法(SAEAS)来解决昂贵的优化问题。尽管SAEAS使用使用机器学习技术近似解决方案评估的替代模式,但先前的研究并未充分研究SAEAS中搜索性能和模型管理策略的Sherrotage模型准确性对搜索性能的影响。这项研究分析了替代模型准确性如何影响搜索绩效和模型管理策略。为此,我们构建了一个具有可调节精度的伪气管模型,以确保在不同的模型管理策略之间进行公平比较。我们比较了三种模型管理策略:(1)预选前(ps),(2)基于个人(IB)和(3)基于一代的基准基准问题的基于生成(GB)的基线模型,而基线模型不使用替代物。实验结果表明,较高的替代模型精度可提高搜索性能。但是,影响根据所使用的策略而变化。具体来说,随着估计精度的提高,PS证明了性能的明显趋势,而当准确性超过一定阈值时,IB和GB表现出强大的性能。模型策略
摘要:当需要用概率方法评估城市隧道与邻近结构的相互作用时,计算能力是数值模型面临的重要挑战。因此,即使样本数量较少,智能采样算法也可以成为获得结果领域更好知识的盟友。无论如何,当采样有限时,风险评估也会受到限制。在这种情况下,人工智能 (AI) 可以通过插入结果并快速生成更大的样本来填补风险分析中的一个重要空白。人工智能算法的目标是找到一个近似函数(也称为替代模型),该函数可以重现原始数值模拟行为并且可以更快地进行评估。该函数是通过在智能采样技术获得的特殊点执行多次模拟来构建的。本文使用了一个假设案例来验证方法建议。它涉及一条深度约为三倍直径的隧道的连续挖掘,与一座七层楼的建筑物相互作用。首先,对三维数值模型 (FEM) 进行确定性求解,然后对其域和网格进行细化。之后,从 FEM 软件中以数值方式获得另外 170 个解决方案,并对所涉及的随机变量进行策略性抽样。接下来,基于 31 种人工智能技术,评估哪些变量对于预测周围建筑物地基元件的垂直位移量级最重要。然后,一旦选出了最重要的变量,就再次对 31 种人工智能技术进行训练和测试,以确定 R 平方最小的技术。最后,使用这种最佳拟合算法,可以使用大量样本(大小约为 10 7 )来计算失败的概率。这些样本用于说明简单蒙特卡罗抽样 (MC) 和拉丁超立方抽样 (LHS) 的收敛性。本文的主要贡献是方法论上的;因此,该新程序可以汇总到与隧道相关问题相关的最先进的风险评估方法中。
摘要 基于物理的数字孪生通常需要大量计算来诊断结构中的当前损伤状态并预测未来的损伤状态。本研究提出了一种新颖的迭代全局局部方法,其中局部数值模型被替代模型取代,以快速模拟大型钢结构的开裂。迭代全局局部方法将尺度从大型钢结构的操作层面扩展到开裂部件的层面。使用静态凝聚可以有效地模拟线性全局域,使用本文提出的自适应替代建模方法可以快速模拟开裂的局部域。本研究将所提出的替代迭代全局局部方法与参考模型、子模型和没有替代模型的迭代全局局部方法的求解时间和准确性进行了比较。研究发现,替代迭代全局局部法求解速度最快,结果也相对准确。
摘要 — 微波滤波器是现代无线通信系统不可或缺的无源器件。如今,基于电磁 (EM) 仿真的设计过程已成为滤波器设计的常态。近年来,出现了许多基于 EM 的微波滤波器设计方法,以实现效率、自动化和可定制性。大多数基于 EM 的设计方法都以各种形式利用低成本模型(即替代模型),人工智能技术则协助替代模型建模和优化过程。本文重点研究替代模型辅助微波滤波器设计,首先分析基于不同设计目标函数的滤波器设计特点。然后,回顾了最先进的滤波器设计方法,包括替代模型建模(机器学习)方法和高级优化算法。其中包括滤波器设计中的三种基本技术:1)智能数据采样技术;2)高级替代模型建模技术。3)高级优化方法和框架。为了获得成功和稳定性,必须对它们进行量身定制或组合,以实现微波滤波器的特定特性。最后,讨论了新兴的设计应用和过滤器设计的未来趋势。
逆向力学参数识别可以表征难以实现均匀变形状态的超软材料。但是,这通常需要很高的计算成本,而这主要取决于正向模型的复杂性。虽然有限元模型等模拟方法可以捕捉几乎任意的几何形状并实现相关的本构方程,但它们的计算成本也很高。机器学习模型(例如神经网络)在用作替代复杂高保真模型的替代模型时可以帮助缓解此问题。因此,在初始训练阶段之后,它们充当降阶模型,在此阶段它们学习高保真模型的输入和输出关系。由于需要进行模拟运行,因此生成所需的训练数据需要很高的计算成本。在这里,主动学习技术可以根据训练模型的估计获得准确度来选择“最有价值”的训练点。在这项工作中,我们提出了一个循环神经网络,它可以很好地近似粘弹性有限元模拟的输出,同时显著加快评估时间。此外,我们使用基于蒙特卡洛辍学的主动学习来识别信息量很大的训练数据。最后,我们通过识别人类脑组织的粘弹性材料参数来展示开发的管道的潜力。
集成 – 在组件、子系统、系统级别开发和应用数字替代真实源模型;使用更高保真度模型和经验数据验证替代模型;在 MDO 分析中部署子系统替代模型;在集成系统级别执行交易和成本研究 分析 – 定义子系统和系统级别对设计变量的敏感性;解决跨子系统的不确定性传播及其对总体系统性能和成本的影响;执行概率分析以量化系统满足性能要求的裕度和不确定性。设计 – 使用更新的数字替代模型为最敏感的设计变量部署方差减少策略设计;使用制造和维持数字替代模型进行制造和维持设计 构建 – 使用替代真实源模型来解释制造和装配公差的变化,这是开发数字孪生的前提。测试 – 优化测试以提供验证数字替代真实源所需的知识;使用测试来监控和减轻关键技术性能参数的不确定性,作为衡量要求进展的指标。操作 - 部署数字孪生来监控健康状况,获取有关系统性能的更多知识,项目最佳维持,和/或为自适应控制提供参考模型。学习 - 积累知识并实施到数字替代模型中,以提高下一个系统的性能。
集成 – 在组件、子系统、系统级别开发和应用数字替代真实源模型;使用更高保真度模型和经验数据验证替代模型;在 MDO 分析中部署子系统替代模型;在集成系统级别执行交易和成本研究 分析 – 定义子系统和系统级别对设计变量的敏感性;解决跨子系统的不确定性传播及其对总体系统性能和成本的影响;执行概率分析以量化系统满足性能要求的裕度和不确定性。设计 – 使用更新的数字替代模型为最敏感的设计变量部署方差减少策略设计;使用制造和维持数字替代模型进行制造和维持设计 构建 – 使用替代真实源模型来解释制造和装配公差的变化,这是开发数字孪生的前提。测试 – 优化测试以提供验证数字替代真实源所需的知识;使用测试来监控和减轻关键技术性能参数的不确定性,作为衡量要求进展的指标。操作——部署数字孪生来监控健康状况,获取有关系统性能的更多知识,预测最佳维持情况,和/或为自适应控制提供参考模型。学习——积累知识并实施到数字替代模型中,以提高下一个系统的性能。