a 诺森比亚大学,电力与控制系统研究组,英国,纽卡斯尔,Ellison Place NE1 8ST b 阿卜杜勒阿齐兹国王大学,可再生能源与电力系统研究卓越中心,沙特阿拉伯,吉达,21589 c 谢菲尔德哈勒姆大学,工程与数学系,英国,谢菲尔德,S1 1WB d 阿卜杜勒阿齐兹国王大学,工程学院,电气与计算机工程系,KA CARE 能源研究与创新中心,沙特阿拉伯,吉达,21589
摘要 —可重构电池系统 (RBS) 正在成为一种有前途的解决方案,可提高容错性、充电和热平衡、能量输送等。为了优化这些性能指标,需要制定和解决高维非线性整数规划问题。在此过程中,需要解决来自非线性电池特性、离散开关状态、动态系统配置以及大型系统固有的维数灾难的多重挑战。因此,我们提出了一个统一的建模框架来适应 RBS 的各种潜在配置,甚至涵盖不同的 RBS 设计,大大促进了 RBS 的拓扑设计和优化问题制定。此外,为了解决制定的 RBS 问题,搜索空间被定制为仅包含可行的 SSV,从而确保系统安全运行,同时大幅减少搜索工作量。这些提出的方法侧重于统一系统建模和缩小搜索空间,为有效制定和高效解决 RBS 最优控制问题奠定了坚实的基础。仿真和实验测试证明了所提出方法的准确性和有效性。
我们研究在量子计算中用随机局部操作取代纠缠操作的方法,但代价是增加所需的执行次数。首先,我们考虑“类空间切割”,其中纠缠单元被随机局部单元取代。我们提出了一种量子动力学的纠缠测度,即乘积范围,它基于两份 Hadamard 检验来限制此替换程序的成本。用先前工作的术语来说,此过程在许多情况下产生具有最小 1 范数的准概率分解,这解决了 Piveteau 和 Sutter 的一个悬而未决的问题。作为应用,我们给出了一种改进的聚类汉密尔顿模拟算法。具体而言,我们表明可以以相互作用的代价消除相互作用,该代价是它们强度乘以演化时间之和的指数,而在弱相互作用的极限下为零。我们还给出了使用“类时间切割”用测量和准备通道替换导线的成本的改进上限。我们证明了估计输出概率时匹配的信息理论下限。
海量的参数和计算需求阻碍了大型语言模型 (LLM) 的广泛应用。网络剪枝为该问题提供了一个实用的解决方案。然而,现有的 LLM 剪枝工作主要集中于非结构化剪枝或需要剪枝后微调。前者依靠特殊硬件来加速计算,而后者可能需要大量的计算资源。在本文中,我们介绍了一种无需再训练的结构化剪枝方法,称为 SoBP ( S structured O ptimal Brain P runing)。它利用全局一阶信息来选择剪枝结构,然后用局部贪婪方法对其进行细化,最后采用模块重构来减少信息丢失。我们在 8 个不同的数据集上对来自 3 个 LLM 系列的 14 个模型的有效性进行了评估。实验结果表明 SoBP 优于当前最先进的方法。
摘要 — 机器学习界对解决对称正定 (SPD) 流形上的域自适应问题表现出越来越浓厚的兴趣。这种兴趣主要源于脑信号生成的神经成像数据的复杂性,这些数据通常会在记录会话期间表现出数据分布的变化。这些神经成像数据以信号协方差矩阵表示,具有对称性和正定性的数学性质。然而,应用传统的域自适应方法具有挑战性,因为这些数学性质在对协方差矩阵进行运算时可能会被破坏。在本研究中,我们介绍了一种基于几何深度学习的新型方法,该方法利用 SPD 流形上的最佳传输来管理源域和目标域之间边缘分布和条件分布的差异。我们在三个跨会话脑机接口场景中评估了该方法的有效性,并提供了可视化结果以获得进一步的见解。该研究的 GitHub 存储库可通过 https://github.com/GeometricBCI/Deep-Optimal-Transport-for-Domain-Adaptation-on-SPD-Manifolds 访问。
摘要 — 使资源有限的机器人能够执行计算密集型任务(例如移动和操作)是一项挑战。本项目提供了全面的设计空间探索,以确定适合基于模型的控制算法的最佳硬件计算架构。我们对通用标量、矢量处理器和专用加速器中的代表性架构设计进行了分析和优化。具体来说,我们使用内核级基准和端到端代表性机器人工作负载来比较标量 CPU、矢量机和领域专用加速器。我们的探索提供了定量的性能、面积和利用率比较,并分析了这些具有代表性的不同架构设计之间的权衡。我们证明架构修改、软件和系统优化可以缓解瓶颈并提高利用率。最后,我们提出了一种代码生成流程,以简化将机器人工作负载映射到专用架构的工程工作。
控制理论提供了一种自然语言来描述多区域交互和灵活的认知任务,例如隐性注意力或脑机接口 (BMI) 实验,这些实验需要找到足够的局部电路输入,以便以上下文相关的方式控制其动态。在最佳控制中,目标动态应该最大化沿轨迹的长期价值概念,可能受控制成本的影响。由于这个问题通常难以处理,因此当前控制网络的方法大多考虑简化设置(例如,线性二次调节器的变体)。在这里,我们提出了一个数学框架,用于对具有低秩连接的随机脉冲神经元的循环网络进行最佳控制。一个基本要素是控制成本,它惩罚偏离网络默认动态(由其循环连接指定),从而促使控制器尽可能使用默认动态。我们推导出一个贝尔曼方程,该方程指定低维网络状态 (LDS) 的值函数和相应的最佳控制输入。最优控制律采用反馈控制器的形式,如果神经元的脉冲活动倾向于将 LDS 移向更高(更低)值的区域,则该控制器向循环网络中的神经元提供外部兴奋性(抑制性)突触输入。我们使用我们的理论来研究将网络状态引导到特定终端区域的问题,这些终端区域可以位于 LDS 中具有慢速动态的区域内或区域外,类似于标准 BMI 实验。我们的结果为一种具有广泛适用性的新方法奠定了基础,该方法统一了神经计算的自下而上和自上而下的视角。
摘要:电池储能系统 (BESS) 的优化因其众多优势(例如提高能源效率、成本效益和促进网络稳定性)而越来越受到消费者的欢迎。随着电动汽车 (EV) 电池的老化,在拆卸电池后进行有效管理对于提高能源效率至关重要。在这种情况下,将二次电池 (SLB) 重新用于 BESS 应用提供了一种非常有吸引力的直接回收或处置替代方案,既具有经济效益又具有环境效益。因此,本研究旨在通过比较 IEEE 14 总线中的新电池和 SLB 来确定 BESS 的最佳尺寸和位置。该分析侧重于开发基于高光伏 (PV) 渗透率、集成运营和投资成本的经济高效的能源系统,使用从线性化网络得出的直流最优功率流 (DC-OPF) 模型。结果表明,与没有 BESS 的情况相比,优化 BESS 分别使光伏渗透率和未供应能源成本降低 2.28% 和 3.38%。此外,25%的光伏渗透率分别使新电池和SLB的每日总运营成本降低约38.89%和74.77%。
摘要。本文提出了一个能源混合系统能源规划的多目标问题。该问题考虑三个主要目标:最大限度地减少发电侧的排放污染和运营成本、解决消费者对电力需求的不满以及减少未来 24 小时内与最佳水平的偏差以平缓需求曲线。为了实现这一目标,实施了需求灵活性策略,包括使用可延迟负荷对电力需求进行最佳转移。所提出的方法利用增强的 epsilon 约束方法来确定目标的帕累托解。此外,还采用 TOPSIS 决策技术从一组帕累托解中选择最优解。通过两个案例研究验证了所提出方法的有效性和稳健性。总体而言,本文强调了在混合系统的能源调度中考虑多目标的重要性,并证明了所提出的方法在实现环境、经济和消费者满意度目标之间的平衡方面的有效性。需求灵活性策略和多目标优化技术的使用可以显著改善能源系统的运行,为更高效的能源管理实践铺平道路。与没有实施需求侧管理相比,实施需求侧管理已使第一和第二个目标分别显著减少了 2.8% 和 64.9%。