众所周知,许多小行星都与地球距离较近,其中一些可能蕴藏着宝贵的资源。因此,可以合理地推测,小行星采矿在未来将成为一项商业业务。2016H03,又名 469219 Kamooalewa,就是这样一颗大小为 100 米的小行星。这颗特殊的小行星与地球的距离约为与月球距离的 40 到 100 倍,其轨道使其成为地球的准卫星。这意味着它绕太阳运行的方式与绕地球运行的方式相同。据推测,对该小行星的探索任务已经完成,并发现了大量宝贵的资源。建立采矿作业并将资源运回地球被认为是可行的,而且会有利可图。然而,为了建立自主作业,似乎有必要将人类送上小行星。这是一个挑战,因为从未有载人进行过这样的深空任务。
简介:美国国家射电天文台 (NRAO)、格林班克天文台 (GBO) 和雷神情报与空间公司 (RIS) 正在为格林班克望远镜 (GBT) 设计一种高功率的下一代行星雷达系统,称为 ngRADAR。作为一个试点项目,RIS 设计的低功率 Ku 波段发射器(13.9 GHz 时输出功率高达 700 W)被集成到 GBO 的 100 米 GBT 上,并使用 NRAO 的十个 25 米甚长基线阵列 (VLBA) 天线接收雷达回波。这些观测生成了有史以来收集到的月球选定位置的最高分辨率地面合成孔径雷达 (SAR) 图像,能够对已报废卫星(太空碎片)的大小和自旋状态进行表征,并探测到距离地球 210 万公里(约 5.5 个月球距离)的潜在危险近地小行星 [1, 2]。在这里,我们重点关注月球雷达图像。
I. 简介 深空量子网络最重要的先决条件之一是能够在大基线上进行量子隐形传态和纠缠交换。将这一真正基本的量子协议扩展到地球-月球距离将扩大量子力学的有效性测试,并作为量子网络的先驱,可用于深空任务中的传感、安全通信、密集编码和量子计算机互连。迄今为止,只有长基线被动隐形传态(Pirandola2015)在长距离上得到了演示,包括进入太空(Ren 等人,2017)。在本白皮书中,我们讨论了通过深空量子链路 (DSQL) 合作(Mohageg2018)发起的超越行星尺度的完整量子隐形传态的实现。我们建议通过将地面接收器(或国际空间站 - ISS)与月球网关连接起来,在地球-月球距离范围内进行隐形传态演示。量子态隐形传态 (Bennett1993) 是一个独特的非经典概念,因为它使用两个通道将未知的量子态完美地从一个系统转移到另一个系统:最大纠缠态和经典信号。第一步是建立纠缠光子的长距离分布,如图 1(a) 所示,在太空中远距离分布,如墨子号任务所示,该任务通过快速变化分析仪在不同地面站点测量光子,在 1200 公里外进行了贝尔测试。量子隐形传态利用这种远程纠缠,如下所示 (Bouwmeester1997):首先,Charlie 生成一对纠缠光子 [图 1(b) 中的光子 A 和 B],A 发送给 Alice,B 发送给 Bob。 Alice 对光子 A 和另一个光子 C 携带的未知量子态联合进行贝尔态测量 (BSM) (Weinfurter1994、Mattle1996、Casmaglia2001),从而将她的两个光子投射到纠缠态中。这个 BSM 会将 Bob 的光子 B 投射到四种可能的状态之一,具体取决于 BSM 的结果。与此同时,Bob 必须在光子 B 到达量子存储器后将其保留,直到他通过经典信道收到 Alice 的 BSM 结果,然后他使用该结果应用幺正运算以完全恢复原始输入状态。请注意,Alice、Charlie 和 Bob 都不会获得有关输入状态的任何知识,并且最终的幺正变换仅取决于(随机)BSM 结果,因此该协议完全遵循量子无克隆 (Wooters1982)。
对我们的行星系统的未来探索依赖于月球作为基地,并踏上了其他行星。因此,必须使用与该天体的高速数据连接。自由空间光学(FSO)通信将使连续宽带连接到地球。目前追求的概念包含数据中继卫星的绕着月球的卫星,每个卫星终端必须克服望远镜孔径限制的月球距离,并在光束指向和跟踪精确度上。我们提出了一个专用链接的概念,该链接来自安装在月球表面上的机器人望远镜站。我们研究了月球表面的这种FSO地面节点的概念架构,并在物理层的链路设计上聚焦。特别是,我们通过多个传输和接收供体增加了FSO通道容量。我们的发现鼓励在通常与空间任务一起使用的大链路距离的FSO通信中应用视线(LOS)多输入多输出(MIMO)技术,因为可以实现最大的MIMO容量。指导我们对链接几何形状的研究,这种连接在技术上似乎是可行的,该系统在相对较低的系统复杂性上与位于一个站点的接收器相对较低,而发射器相距仅几米。
The next generation planetary radar system on the Green Bank Telescope Patrick A. Taylor National Radio Astronomy Observatory, Green Bank Observatory Steven R. Wilkinson Raytheon Intelligence & Space Flora Paganelli National Radio Astronomy Observatory Ray Samaniego, Bishara Shamee, Aaron Wallace Raytheon Intelligence & Space Anthony J. Beasley Associated Universities Inc., National Radio Astronomy Observatory ABSTRACT The National Radio天文学天文台(NRAO),绿色银行天文台(GBO)和雷神智能与空间(RIS)正在为绿色银行望远镜(GBT)设计高功率的下一代行星雷达系统。作为一个试点项目,由RIS设计的低功率,KU波段发射器(在13.9 GHz时高达700 W)集成在GBO的100米GBT上,并在NRAO的TEN 25米长基线阵列(VLBA)Antennas上收到了雷达回声。这些观察结果产生了最高分辨率,基于地面的,合成的孔径雷达图像,在有史以来收集到的月球上的某些位置,提供了已销售的卫星的大小和旋转状态特征,并以21亿米的距离(〜5.5个月球距离)检测到近地球的小行星。设计工作继续以使用VLBA的500 kW,KU频段行星雷达系统的最终目标,使用VLBA和未来的下一代非常大的阵列(NGVLA)作为接收器,具有目标表征和成像的能力,用于太空情境/领域的意识和行星科学/行星科学/国防。作为近期的下一步,中等功率的KU波段发射器(至少为10 kW)的集成将在GBO/NRAO上开发端到端系统以进行实时雷达观测。1。引入空间意识,空间中自然和/或人为物体的预测知识和表征是美国(美国)空间活动的关键能力。在美国进行雷达天文学和行星防御的高功率雷达基础设施通常依靠国家科学基金会(NSF)的资产和国家航空航天及空间管理局(NASA)来执行这一任务。自2020年以来,波多黎各的Arecibo天文台威廉·E·戈登(William E. Gordon)望远镜倒塌,美国科学界对高功率雷达观察的访问已大大减少,从而使加利福尼亚州的70 m金石望远镜(DSS-14)在加利福尼亚州的高空网络中,仅在加利福尼亚州的一部分中,唯一的范围是一个范围的范围。在Arecibo崩溃时,Associtions Inc.(AUI)管理国家射电天文学观测站(NRAO)和绿色银行观测站(GBO),以及合作伙伴雷神智能与空间(RIS)刚刚使用100-m Robert C. Byrd Green Bank Telescope(gbt) 1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。 GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。 在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。1,作为雷达发射器和非常长的基线阵列(VLBA)的十米天线作为接收器。GBT经常充当雷达接收器,用于从Arecibo和Goldstone的传输中,由于其大量孔径和可操作性,这是GBT首次用作GBT作为雷达发射机。在使用GBT/VLBA系统进行的两个观测活动中,我们获得了月球的合成孔径雷达(SAR)图像,以两个已停产的卫星的形式收集到空间碎片,并检测到一个近乎地球小行星。详细信息在[1]中提供。在这里,我们讨论了2020年11月和2021年3月进行的GBT/VLBA雷达观察的实验和结果,以及针对高功率,下一代行星雷达系统的计划。NRAO/GBO/RIS团队目前正在开发的新技术具有直接解决和克服损失Arecibo望远镜造成的科学能力差距的潜力。除了实现前所未有的科学外,我们的下一代行星雷达系统还可以添加