近年3,4,气候敏感性(ECS;预期的长期变暖会响应大气CO 2浓度的增加一倍)和当今的气溶胶有效辐射强迫(ERF AER)仍然表现出较大的不确定性5,最近被评估为非常可能的评估(90%的概率范围)(90%的可能性范围)。到1750年)。ECS和ERF AER是对未来变暖6的不确定性最大的两个因素,尽管已经提出了可以将它们联系起来的物理机制7,8 20
图1:根据模型中计算的运输排放减少80%的有效辐射强迫。分别绘制每个合奏构件,平均ERF值(黑点),66%的置信区间(厚彩色条),90%135置信区间(薄色棒)和95%的置信区间(垂直实心线),显示了基于年中的变化。表1中给出了单个模型的合奏成员的长度。对于OsloctM3,计算出的RF值显示为黑点。多模型平均值由黑色钻石表示。模型均值的范围(作为集合均值的平均值)显示为橙色条。
在温暖云中的抽象气溶胶相互作用(ACI)是历史期间有效辐射强迫(ERF)的不确定性的主要来源,并且通过扩展为推断的气候灵敏度。由于ACI(ERFACI)引起的ERF由云的强迫组成,这是由于云微物理学的变化和对微物理学的云调整。在这里,我们使用CAM6中托管的扰动参数集合(PPE)来检查驱动ERFACI的过程。对PPE的观察性约束会导致云微物理学和巨摩托学对人为气溶胶的响应的重大限制,但仅对Erfaci的限制最小。对PPE中的云和辐射过程的检查揭示了降水效率和辐射性敏感性的相互作用来缓冲Erfaci。
矿物尘埃气溶胶通过与辐射、云、大气化学、冰冻圈和生物地球化学的相互作用影响地球的能量预算。在本评论中,我们总结了这些相互作用,并评估了尘埃以及尘埃变化对全球气候和气候变化的影响。尘埃相互作用对地球全球能量预算的总体影响——尘埃有效辐射效应——为 -0.2 ± 0.5 Wm -2(90% 置信区间),这表明尘埃净值使气候变冷。自工业化前时代以来,全球尘埃质量负荷增加了 55 ± 30%,主要是由于亚洲和北非的尘埃增加,导致地球能量预算发生变化。事实上,尘埃的增加产生了全球平均有效辐射强迫 -0.07 ± 0.18 Wm -2,在一定程度上抵消了温室效应。当前的气候模型和气候评估没有反映出历史上尘埃的增加,因此忽略了由此产生的辐射强迫,导致气候变化预测和气候敏感性评估出现偏差。气候模型对未来尘埃变化的模拟差异很大,而且非常不确定。因此,需要进一步研究以限制尘埃对气候的辐射效应,并改善气候模型中尘埃的表征。
摘要国际海事组织(IMO)介绍了有关2020年运输排放硫含量的新法规(IMO2020)。对人为硫酸盐气溶胶的全球降低的气候影响的估计值差异很大。在这里,我们使用UKESM1使用两组气候模型模拟来缩小这种不确定性。使用固定的海面温度大气模拟,我们估计IMO2020全球有效辐射强迫为0.139±0.019 wm -2,并表明大多数强迫均由气溶胶引起的云特性变化。使用耦合的海洋大气模拟,我们注意到云顶液滴数量的浓度和大型交通密度较高的地区的大小发生了显着变化,在北大西洋和北太平洋地区,这些微物理变化转化为云标题的减少。我们表明,IMO2020在2020 - 2029年间,IMO2020平均每年的年度表面温度平均增加了0.046±0.010°C。大约2 - 3年的全球变暖。此外,我们的模型模拟表明,IMO2020有助于解释2023年的特殊变暖,但是需要其他因素来充分考虑它。2023年在顶部 - 大气层上反射的短波辐射的降低也非常大。我们的结果表明,IMO2020的可能性更大,但观察结果却在模拟的变化范围内,而没有减少运输排放。为了更好地了解IMO2020的气候影响,模型对比项目将是有价值的,而社区则等待更完整的观察记录。
摘要:建模研究表明,由于大气 CO 2 浓度增加,陆地上地表气温 (SAT) 的增幅大于海洋上表气温的增幅。这种所谓的陆地–海洋变暖对比 f ,定义为陆地平均 SAT 变化除以海洋平均 SAT 变化,是全球变暖的一个显著特征。陆地热容量小不太可能是唯一的原因,因为陆地–海洋变暖对比是在 CO 2 加倍实验的平衡状态下发现的。已经提出了几种不同的机制来解释陆地–海洋变暖对比,但尚未获得全面的理解。在本研究的第一部分中,我们提出了一个基于大气顶部和大气的能量预算来诊断 f 的框架,这使得有效辐射强迫 (ERF)、气候反馈、热容量和大气能量传输异常的贡献能够分解为 f 。利用该框架,我们使用 15 个耦合模式比对计划第六阶段 (CMIP6) 地球系统模型,分析了 SAT 对 CO 2 突然增加四倍的响应。在近平衡状态下(第 121-150 年),f 为 1.49 6 0.11,这主要是由于陆地和海洋的 ERF 和热容量差异引起的。我们发现 ERF、反馈和能量传输异常的贡献往往会相互抵消,导致模型间 f 的扩散较小,而各个组成部分的扩散则较大。在没有热容量贡献的平衡状态下,ERF 和能量传输异常是 f 的主要贡献者,它与平衡气候敏感性呈现出微弱的负相关性。
摘要:城市环境的微气候条件影响着人类的热舒适性。热舒适的主要人类生物气象学参数之一是平均辐射温度(TMRT),它可以量化有效的辐射液到达人体的有效辐射流。模拟工具已被证明可用于分析城市空间的辐射行为及其对居民的影响。我们提出了一种新方法,使用3-D离散各向异性辐射转移模型(DART)进行TMRT空间分布的详细建模。我们的方法能够在不同的尺度和一系列参数下模拟TMRT,包括城市图案,地面材料,墙壁,屋顶和植被的特性(覆盖,形状,光谱,频谱,叶片区域索引和叶子面积密度)。在(1)短波和长波域中的辐射的细节处理中,((2)城市表面材料和植被的光学特性的详细规范,(3)植被组件的精确表示,以及(4)从多个输入中衍生出的远程分配的能力。我们说明并提供对新加坡方法的第一次评估,这是一个具有强大城市热岛效应(UHI)的热带城市,并寻求增强户外热舒适。在10:00至19:00的一段时间内,在我们的研究地点,在我们的研究地点中,模拟和场估计的TMRT之间的比较在我们的研究地点显示出良好的一致性(r 2 = 0.9697,RMSE,RMSE = 3.3249)。使用3-D辐射转移模型显示出有望研究城市微气候和室外热舒适的有希望的能力,并增加了景观细节,并建立与遥感数据的联系。我们的方法论与适当的工具结合使用,有助于优化气候敏感的城市设计。