甲基parathion是一种典型的有机磷农药,对全球环境和人类健康构成威胁。在这项研究中,我们开发了一种可移植的2D传感垫,用于监测基于创新的混合材料的聚集诱导的发射(AIE)特性,该材料将纤维素纳米纤维(CNFS)与发光的金属有机框架(LMOFS)相结合。混合材料增强了LMOF的柔韧性和可塑性,并显着提高了传感材料的可扩展性。将所得的CNF/LMOF材料变成2D垫中,在紫外线暴露下表现出荧光性能。暴露于甲基parathion时,垫子的荧光可淬灭。通过监测405 nm波长的荧光孔的强度变化,这种宿主 - 圈相互作用可以精确地量化农药的浓度。我们将这些混合动力垫进一步设计为用户友好且便携式感应原型,然后通过真实的样品测试对其进行了验证。时间依赖性密度功能理论被采用来阐明甲基parathion触发的潜在荧光猝灭机制。这项工作引入了一个实用且可持续的感应平台,用于农药检测。
(R,S) - 和(S) - 酮胺在治疗耐药抑郁症(TRD)方面取得了重大进展,近年来已成为研究重点。但是,它们都有限制其临床用途的心理影响,分离效应和虐待责任的风险。最近的临床前和临床研究表明,与(R,S)和(S) - 酮胺相比,(R) - 酮胺具有更有效和持久的抗抑郁作用,副作用较少。然而,最近的一项小样本随机对照试验发现,尽管(r)酮胺在成人TRD治疗中的不良反应发生率较低,但其抗抑郁药的效率并不优于安慰剂组,表明其抗抑郁药的优势仍然需要进一步的验证和透明度。此外,越来越多的研究表明,(r) - 氯胺酮在预防和治疗医学领域或疾病中也可能有显着应用,例如认知疾病,围手术性麻醉,缺血性中风,parkinson的疾病,多发性硬化性,多种症状,骨质疾病,异常症,杂音,杂音,杂物,以及以下杂物。有机磷酸中毒。本文Brie-trip y回顾了与(r) - 酮胺有关的抗抑郁药的作用机理和研究机制,充分揭示了其应用潜力和开发前景,并为随后的扩展研究提供了一些参考和帮助。
摘要Siddha系统是印度南部的传统系统,尤其是在泰米尔纳德邦。thylam(药油)是32种内部药物之一。karunkozhi thylam(KKT)用于治疗vatha病(退化性疾病)。定性和定量分析可确保药物的质量和安全性,并最大程度地减少污染和掺假风险。Weight/ml, refractive index (RI), density, iodine value (IV), acid value (AV) were analyzed as standardization parameter and GC-MS were employed to identify the active compound and test for heavy metals (lead, cadmium, mercury, arsenic), microbial contamination, test for specific pathogen (E.coli, Salmonella spp., Staphylococcus aureus,铜绿假单胞菌),农药残留(有机氯,有机磷,拟除虫菊酯),黄曲霉毒素的测试(B1,B2,G1,G1)用作安全措施。结果表明RI为1.457,密度为1.213g/cm 3,IV为108.12g I/100g,AV为0.86mg KOH/g。安全参数在可接受的限制之内。GC-MS显示具有抗炎活性的油酸和N-六核酸的存在。本研究为KKT建立了标准化协议,以确保质量,安全性和功效。这些发现对法规合规性具有重要意义,并提出了进一步研究的领域。
由于其出色的热稳定性而部分芳香的聚酰胺被广泛用于高温应用中,但是,就像其脂肪族对应物一样,它们很容易易燃且更具挑战性的处理。在这项工作中,合成了几种有机磷的阻燃剂并与部分芳香的聚酰胺合成并复杂化,并评估其可加工性,热和火行为。The compounds containing a commercial flame retardant, Exolit ® OP 1230 (EX), and two new flame retardants, namely 1,4-phe nylenebis(diphenylphosphine oxide) (MP) and (1,1 ′ -biphenyl]-4,4 ′ -diylbis(diphenylphosphine oxide) (BP), showed self-extinguishing与原始PAP相对于原始PAP,功能(即UL94 V0类)具有4 wt%磷(P)的载荷,以及PHRR的实质性降低(最高47%)使用扩展时间尺度上的流变学测量来评估部分芳香族聚酰胺化合物的熔体稳定性。聚合物基质中MP和BP的存在不会触发任何过度的降解现象,例如链条分支,分支或交联反应,从而允许与原始芳族芳族聚酰胺样品相似的稳定加工性。最后,对热分解过程中进化气体的分析表明,在分解过程的早期,MP和BP在很早的早期就发挥着火焰抑制作用。
6化学系,Banasthali Vidyapith,Newai-304022,Rajasthan India摘要摘要一个微型,基于Quecher的,液体 - 液 - 液体提取方法,然后开发了76个Qunice same and Samame and Samame and Samame and Samame and same and Samame and same and same and same and same prigental and tandem气体色谱 - 质量仪表/20212121212122/2022/202222221221212213122/2022222222222。来自印度地区德里NCR的确定农药残留物。评估了该方法的准确性,精度,特异性,线性,可重复性,可重复性,鲁棒性,稳健性,限制和该方法的定量限制。计算每个分析物的不确定性测量。使用液态液体提取过程将样品用二氯甲烷提取。使用多个反应监测(MRM)模式,通过不同的MS参数和色谱条件来优化每种农药。在每种农药的线性回归共效率(r 2)值中,确定为0.9856- 0.9997的范围。在1、5和10 LOQ尖峰水平的87.98-119.99中发现平均回收率百分比。可以实施符合法规要求的方法性能。LOD和LOQ分别为10µg/L和30µg/L。根据Sante 11312/2021,所有农药的不确定性的扩展测量值低于平均恢复值的±50%。有机磷,杀菌剂和拟除虫菊酯是最常见的农药。在这项研究中,在MRL上方发现了12种农药(EEC理事会指令1980/778/EEC)。此外,在地下水样品中发现了现在在印度被法律禁止的迪尔德林。该方法提供了具有令人满意的选择性,灵敏度,准确性和精度的多级农药的高通量分析。
杰拉米·亚当斯(Jeramie Adams)于2008年从怀俄明大学(UW)获得了化学博士学位,并在接下来的四年中继续担任博士后研究员,讲述了均质有机金属催化剂和高度氧化激发态光活性材料的发展。在UW期间,他还探索了超分子化学,无机光化学,深度有机磷酸化学,烷烃的脱氢,氢硅烷基化和烯烃聚合。亚当斯博士于2012年加入WRI,并管理了各种行业领先的计划,商业项目和联邦项目,包括重石油研究联盟,有问题的CRUDES研究联盟的加工改善,沥青行业研究联盟,最近的DOE项目联盟以及美国的DOE Project Insport Insportium,以实现美国公司的负担得起的碳纤维。许多项目强调化学与物理特性或其他现象之间的关系。其他积极研究的领域包括化学表征碳氢化合物,包括煤提取物,原油,蜡,沥青质,焦化的沥青质,界面沥青质,沥青,沥青和俯仰材料;调节原油乳液;沥青吸附;蜡质原油的处理;石油,煤和生物质中氧官能团的化学修饰;各向同性煤炭沥青和石油螺距转化为各向异性中间机,以换成碳纤维;热交换器污染;焦在近似延迟的Coker条件下进行材料的协调;部分升级;从煤中提取液体;高级碳材料;大气到高真空蒸馏;并通过化学合成生产新的恢复活力,PG性能增强剂和抗氧化剂产品。
土壤胞外酶活性(EEA)化学计量学反映了微生物对资源的代谢需求和养分有效性之间的动态平衡。然而,在贫营养环境下的干旱荒漠地区,代谢限制的变化及其驱动因素仍不清楚。在本研究中,我们调查了中国西部不同沙漠类型的样本,并测量了两种碳获取酶(β-1,4-葡萄糖苷酶和β-D-纤维二糖水解酶)、两种氮获取酶(β-1,4-N-乙酰氨基葡萄糖苷酶和L-亮氨酸氨基肽酶)和一种有机磷获取酶(碱性磷酸酶)的活性,以量化和比较土壤微生物基于其EEA化学计量学的代谢限制。所有沙漠的对数转换后的 C、N 和 P 获取酶活性比率为 1:1.1:0.9,接近假设的全球平均 EEA 化学计量比(1:1:1)。我们使用比例 EEA 通过矢量分析量化了微生物营养限制,发现微生物代谢受到土壤 C 和 N 的共同限制。对于不同类型的沙漠,微生物 N 限制按以下顺序增加:砾石沙漠 < 沙沙漠 < 泥沙漠 < 盐沙漠。总体而言,研究区域的气候对微生物限制变化的解释比例最大(17.9 %),其次是土壤非生物因素(6.6 %)和生物因素(5.1 %)。我们的研究结果证实,EEA 化学计量学方法可用于多种沙漠类型的微生物资源生态学研究,并且即使在沙漠等极度贫营养环境中,土壤微生物也能通过调节酶的产生来增加对稀缺营养物质的吸收,从而维持群落水平的营养元素稳态。
海洋溶解有机磷 (DOP) 库主要由 P 酯组成,此外还有同样丰富的膦酸盐和 P 酐分子(数量较少)。在磷酸盐有限的海洋区域,固氮菌被认为依赖 DOP 化合物作为磷 (P) 的替代来源。虽然 P 酯和膦酸盐都能有效促进氮 (N 2 ) 固定,但 P 酐对固氮菌的作用尚不清楚。在这里,我们探讨了 P 酐对两个生物地球化学条件形成鲜明对比的站点的 N 2 固定的影响:一个位于汤加海沟火山弧地区(“火山”,磷酸盐含量低、铁浓度高),另一个位于南太平洋环流(“环流”,磷酸盐含量中等、铁含量低)。我们用 AMP(P 酯)、ATP(P 酯和 P 酐)或 3polyP(P 酐)培养表层海水,并确定了 Crocosphaera 和 Trichodesmium 中细胞特定的 N 2 固定率、nifH 基因丰度和转录。Trichodesmium 对添加的任何 DOP 化合物均无反应,这表明它们在火山站不受 P 限制,并且在环流站被低铁条件击败。相反,Crocosphaera 在两个站都数量众多,它们的特定 N 2 固定率在火山站受到 AMP 的刺激,在两个站受到 3polyP 的轻微刺激。尽管磷酸盐和铁的可用性形成对比,但两个站的异养细菌对 ATP 和 3polyP 添加的反应相似。 Crocosphaera 和异养细菌在低磷酸盐浓度和中等磷酸盐浓度下使用 3polyP 表明,这种化合物除了是 P 的来源外,还可用于获取两个群体竞争的能量。因此,P-酸酐可能会在未来分层和营养贫乏的海洋中利用能量限制来限制固氮菌。
引言植物是生物,特别是植物,通常由人类栽培(Yassir & Asnah,2019)。作物这一术语通常与草本植物区分开来,草本植物是为了使用而种植的,例如在特定时间收获。世界各地种植的主要作物包括小麦、玉米、水稻、土豆、甘蔗和大豆(Wattimena,2011)。因此,利用土壤微生物来增加养分的利用率和吸收率非常重要。养分含量和植物反应是土壤的化学、物理和生物方面相互作用的结果(Sari 等人,2020 年)。这三个因素相互关联,共同影响土壤肥力,进而影响植物所需养分的形态和有效性以及植物吸收养分的能力。土壤含有两种类型的矿物质,即原生矿物质和次生矿物质。一般而言,所有营养物质均来自母岩及其所含的矿物质(Yassir & Asnah,2019)。土壤是各种微生物的栖息地。土壤微生物包括生活在土壤中的微小生物。土壤微生物的一些例子包括螨虫、昆虫幼虫、蚯蚓、白蚁、蚂蚁、甲虫、藻类、蓝藻、真菌、跳虫、线虫和原生动物。土壤微生物是一类生物,它们可能是最丰富但看起来最微不足道的,然而它们在土壤生态系统的功能中起着非常关键的作用(Febriana,2024)。它们负责有机化合物的分解过程,利用和释放营养物质,甚至起到增加植物对营养物质吸收的作用。在农业生态系统中,土壤微生物可以充当生物肥料、生物农药和设施友好的生物修复剂。 (Tesiana et al., 2024)甚至表示,使用包括枯草芽孢杆菌在内的合生元可以避免高达40%的污染并可以维护环境。此外,土壤微生物有助于减少因使用农用化学品而造成的土壤污染。 (Pratiwi & Asri, 2022) 还解释说,土壤微生物可以降解有机磷农药残留,从而不会降低土壤和农业环境的质量。这不仅有利于植物生长,而且还最大限度地减少了对环境的负面影响。因此,土壤微生物对
Pikovskaya 琼脂 预期用途 Pikovskaya 琼脂用于检测溶解磷酸盐的土壤微生物。 摘要 磷酸盐在土壤中以有机和无机形式存在。来自死亡和腐烂植物残骸的有机物富含有机磷源。然而,植物只能以游离形式利用土壤中的磷。土壤磷酸盐由植物根部或土壤微生物提供。因此,溶解磷酸盐的土壤生物在纠正农作物缺磷方面发挥着作用。 Sundara Rao 和 Sinha 改良了 Pikovskaya 琼脂,用于检测土壤中溶解磷酸盐的细菌。 原理 培养基中的酵母提取物提供氮和其他营养物质,以支持细菌生长。葡萄糖作为能量来源。不同的盐和酵母提取物支持生物的生长。溶解磷酸盐的细菌将在此培养基上生长,并在菌落周围形成一个透明区域,这是由于菌落附近的磷酸盐溶解而形成的。配方* 成分 g/L 酵母提取物 0.5 葡萄糖 10.0 磷酸钙 5.0 硫酸铵 0.5 氯化钾 0.2 硫酸镁 0.1 硫酸锰 0.0001 硫酸亚铁 0.0001 琼脂 15.0 最终 pH(25°C 时) 7.0 ± 0.2 *根据性能参数进行调整。 储存和稳定性 将脱水培养基储存在密闭容器中,温度低于 30°C,将配制好的培养基储存在 2°C-8°C 下。避免冷冻和过热。请在标签上的有效期前使用。开封后,请将粉末培养基密闭,以免受潮。 样本采集和处理 对于临床样本,请按照既定指南遵循适当的样本处理技术。对于食品和乳制品样本,请按照既定指南遵循适当的样本处理技术。对于水样,请按照既定指南和当地标准采用适当的技术处理样本。应在施用抗菌剂之前获取样本。使用后,受污染的材料必须通过高压灭菌器进行灭菌,然后才能丢弃。说明