2型糖尿病(T2D)是21世纪最大的公共卫生挑战之一。尽管可用的疗法,预防计划,连续的葡萄糖监测,数字工具以及营养和运动计划,但我们仍未控制这种疾病。全世界有超过5亿人患有糖尿病,低收入国家和中等收入国家的疾病患病率最高,其中一半的人缺乏正式诊断。仅在美国,就有超过3300万T2D的人,费用超过3亿美元来管理他们的护理。进一步加剧了这场危机,现在有60种药物可以在美国治疗T2D和可用的管理选择生态系统。然而,被认为是“良好管理”的T2D人群的份额(定义为HBA1C为7%或以上)正在下降。T2D干预措施的可用性与疾病结局的趋势之间的反比关系是我们国家公共卫生危机的标志。
预计收入将减少 128 亿美元,仅为这一数字的一半。国际航空运输协会总干事亚历山大·德·朱尼亚克 (Alexandre de Juniac) 表示,对于那些更多地接触中国市场的航空公司来说,影响将是“严重的”。“航空公司正在做出削减运力的艰难决定,在某些情况下,还会削减航线。今年对航空公司来说将是非常艰难的一年,”他补充道。国际航空运输协会的估计是在法航荷航集团和澳航成为首批报告该疾病可能对利润造成影响的航空公司之后发布的。法航荷航集团股价昨日一度暴跌 7.6%,此前该航空集团警告称,如果航班继续停飞,到 4 月份,该疾病可能会使收益减少高达 2 亿欧元(1.674 亿英镑)。“显然,如果持续时间更长,影响会更大,”其财务主管 Frederic Gagey 补充道。以及许多全球航空公司,如英国航空、维珍航空和
可以帮助创建系统来学习和执行多种操作 (Ahmed 等人,2021)。通常,机器学习用于各种预测或检测欺诈。机器学习算法用于变化,必须使用数据集进行训练。训练结果的模型可用于对假新闻进行分类或检测。为了检测假新闻,一些研究人员创建了算法或系统,根据新闻文章、博客和社交媒体中包含的内容、文本和语言风格来检测假新闻。根据作者或作者使用语言的方式识别和分类假新闻。 (Torabi Asr & Taboada, 2019) 发现假新闻经常使用与丑闻、死亡和恐怖有关的词语。此外,误导性新闻中的许多语言风格都是故意夸大或过于戏剧化的,第二人称代词的使用与假新闻直接相关 (Hancock 等人,2007;Rashkin 等人,2017)。利用AI技术克服虚假新闻的频繁和快速出现。
由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
由于科技的飞速发展,人们可以快速轻松地获取信息和新闻。浏览网站、博客和社交媒体可以在几分钟内访问该消息。然而,复杂的信息技术是一把双刃剑。一方面,它帮助人们方便地消费最新的新闻,另一方面,公众消费的许多新闻是尚未知晓的假新闻。新闻中的错误信息给多方造成了伤害。最常见的假新闻包括疫情新闻、股票交易所,尤其是最近俄罗斯和乌克兰之间战争的新闻。在短时间内,大量假新闻流传,可能引发对战争的更大影响。一项分析发现,随着时间的推移,假新闻不断增加(Zhou et al.,2019)。因此,检测假新闻
1 圣路易斯儿童医院,31-503 克拉科夫,波兰;katarzyna.dylag@dzieciecyszpital.pl (KAD);krasnoludki11a@poczta.onet.pl (BB) 2 克拉科夫雅盖隆大学医学院病理生理学系,31-121 克拉科夫,波兰 3 克拉科夫雅盖隆大学医学院生物信息学和远程医疗系,30-688 克拉科夫,波兰;wiktoria.wieczorek@student.uj.edu.pl (WW); piotr.walecki@uj.edu.pl(PW)4 AGH 科技大学自动控制与机器人系,30-059 克拉科夫,波兰 5 VSB 俄斯特拉发技术大学控制论与生物医学工程系,708 00 俄斯特拉发-波鲁巴,捷克共和国;radek.martinek@vsb.cz 6 奥波莱理工大学电气工程学院,45-758 奥波莱,波兰* 通信地址:bauer@agh.edu.pl(WB);kawala84@gmail.com(AK-S.)† 这些作者对本文的贡献相同。
据估计,随着人口老龄化,糖尿病发病率将从19.9%增加到65-79岁的1.112亿人,预计到2030年糖尿病患者将继续增加到5.78亿人,到2045年将增加到7亿人。机器学习是人工智能的一种,旨在理解或识别数据结构并将数据转换为模型。机器学习在健康领域的应用正在迅速增长,越来越多的健康研究人员在研究中使用机器学习算法。一些机器学习算法可以用来做预测,其中之一就是预测糖尿病的分类算法。根据所用几种算法的比较结果,朴素贝叶斯和梯度提升分类算法具有其他算法的最佳值。梯度提升算法在线性样本上取得了较高的效果,准确率为77.09%,f值达到83.39%。朴素贝叶斯对随机样本测试的结果最优,准确率为 76.57%,f 度量值为 82.82%。分层样本测试结果中准确率最高的是梯度提升算法,准确率为77.34%,f值达到83.39%。
图 1:将样本从两个类别中分离出来的最大边际超平面 ...................................................................... 9 图 2:决策树算法 .............................................................................................................. 11 图 3:使用决策树对直接邮寄的响应进行分类 ........................................................................ 12 图 4:用于数据分析的 Python 库 ............................................................................................. 21 图 5:我们数据集中缺失值的摘要 ............................................................................................. 23 图 6:热图函数表示空值的分布 ............................................................................................. 24 图 7:说明调查类型的 Python 代码 ............................................................................................. 25 图 8:说明业余建造的 Python 代码 ............................................................................................. 26 图 9:说明飞行阶段的 Python 代码 ............................................................................................. 27 图 10:说明可变数量的发动机的 Python 代码 ............................................................................. 28 图 11:用四个属性的模态值替换缺失值的 Python 代码和结果 ................................................................................................................. 29 图 12:清理后的数据集,没有空值 ............................................................................................. 30图 14:从分类转换为数值后的调查类型摘要 ......................................................................................................................................................................31 图 15:从分类转换为数值后的天气状况摘要 ......................................................................................................................................................31 图 16:从分类转换为数值后的业余建造摘要 ......................................................................................................................31 图 17:从分类转换为数值后的飞行阶段摘要 ......................................................................................................31 图 18:带有数值的发动机数量摘要 .............................................................................................................32 图 19:我们数据集中变量之间相关性的摘要。 .............................................................................................34 图 20:我们数据集的形状 .............................................................................................................................34 图 21:我们数据集中的所有变量 .............................................................................................................35 图 22:筛选特征(可能导致空调事故的潜在特征) .............................................................................................35 图 23:特征重要性 ................................................................................................................ 36 图 24:决策树分类器的分类报告和准确度得分 .............................................................................. 37 图 25:决策树分类器的混淆矩阵 .............................................................................................. 38 图 26:基于曲线下面积的决策树分类器性能图表 ............................................................................................. 38 图 27:随机森林分类器的分类报告和准确度得分 ............................................................................. 39 图 28:随机森林分类器的混淆矩阵 ............................................................................................. 39 图 29:基于曲线下面积的随机森林分类器性能图表 ............................................................................................. 39 图 30:SVM 分类器的分类报告和准确度得分 ............................................................................................. 40 图 31:SVM 分类器的混淆矩阵 ............................................................................................. 40 图 32:基于 AUC 的 SVM 分类器性能图表 ............................................................................................. 40 图 33:朴素贝叶斯的分类报告和准确度得分分类器 .................................................. 41 图 34:朴素贝叶斯分类器的混淆矩阵 .............................................................. 41 图 35:基于 AUC 的朴素贝叶斯分类器性能图表 .............................................. 41 图 36:基于 AUC 对飞机事故数据的不同分类模型的评估性能 ............................................................................................................. 42SVM 分类器的混淆矩阵 ................................................................................................ 40 图 32:基于 AUC 的 SVM 分类器性能图表 .............................................................. 40 图 33:朴素贝叶斯分类器的分类报告和准确度得分 ............................................................ 41 图 34:朴素贝叶斯分类器的混淆矩阵 ............................................................................. 41 图 35:基于 AUC 的朴素贝叶斯分类器性能图表 ............................................................. 41 图 36:基于 AUC 的不同分类模型在飞机事故数据上的评估性能 ............................................. 42SVM 分类器的混淆矩阵 ................................................................................................ 40 图 32:基于 AUC 的 SVM 分类器性能图表 .............................................................. 40 图 33:朴素贝叶斯分类器的分类报告和准确度得分 ............................................................ 41 图 34:朴素贝叶斯分类器的混淆矩阵 ............................................................................. 41 图 35:基于 AUC 的朴素贝叶斯分类器性能图表 ............................................................. 41 图 36:基于 AUC 的不同分类模型在飞机事故数据上的评估性能 ............................................. 42