职责与责任:企业运营提供持久的网络任务能力。企业运营包括所有适用的法规,但具体包括空军部 (DAF) 内信息系统(包括作战通信)的设计、构建、配置、维护和维持。国防部信息网络 (DoDIN) 运营任务包括为保护、配置、操作、扩展、维护和维持国防部网络空间以及创建和维护国防部信息网络的机密性、可用性和完整性而采取的行动。任务防御活动对国防部信息网络和其他国防部系统进行有针对性的防御,以执行 DAF 行动。行动侧重于通过特定作战区域内的防御和保护措施来识别、定位和击败危及通信、信息、电磁环境或工业系统安全的特定威胁。在有争议、有降级和被拒止的环境中开展行动,包括但不限于国防部网络、机载平台、严酷环境、AOC/JOC(空中和太空作战中心/联合作战中心)、武器系统、ICS(工业控制系统)和 SCADA(监视控制和数据采集)系统,以及在任务效力中发挥作用的其他互连设备。数据作战通过提供信息作战和软件开发方法来实现数据驱动的决策。作战通过快速设计、开发、测试、交付和集成可靠、安全的任务支持系统,使作战人员和武器系统/平台的能力现代化并得到增强。为需要实时数据驱动决策的指挥官提供自动化解决方案。远征通信在严酷和移动环境中提供网络能力。远征通信包括所有适用的法规,特别是数据链,在需要支持作战人员要求时建造、操作、维护、保护和维持战术和通信网络,在严酷、机动和/或远征环境中使用的系统,为支持空军和太空部队的任务提供指挥和控制。
ROVER 能力简介 A2Q ISR 创新中校 Chuck Menza Charles.menza@pentagon.af.mil Rover@pentagon.af.mil 703.693.3980 免责声明:本简报/演示仅供参考,美国政府不承诺以任何方式或意图出售、租借、租赁、共同开发或共同生产国防物品或服务。 战时创新:4 天测试 - 4 周投入战斗 ROVER 项目描述/概述:什么:ROVER 通过机载、移动、固定或便携式终端从机载平台向地面用户提供全动态视频 (FMV)。如何:机载平台将包含 FMV 的信号传输给地面用户,地面用户使用连接到显示器(笔记本电脑或模拟设备)的多波段 ROVER 接收器来观看视频和/或遥测。原因:提供实时信息,使人员能够从视频中瞄准目标、请求近距离空中支援、指挥机组人员调整瞄准以将炸弹投掷到目标上、提供灵活性、捕获/记录视频、提供飞机位置/坐标以供定位等... 当今用途:互操作性(非详尽):Predator Liberty Litening Pod P3 Swift Pointer Tern AC-130 Shadow Pioneer Scathe View Raven Dragon Eye Fire Scout SNIPER Pod Mako/Tigershark Scan Eagle Hunter Strike Killer Team 什么是 ROVER? • 遥控视频增强接收器 – 空军负责接收全动态视频 (FMV) • ROVER 使用来自各种机载平台的视距视频下行链路 – 无人机系统 (UAS) 和高级瞄准吊舱 (ATP) – 载人平台 – 未加密和加密 – 模拟和数字 – 双向和 IP(即将推出) 由 ISR 创新办公室 (A2Q) 和 Big Safari - QRC 管理 ROVER 是什么 – 不是什么? • 不是记录程序 • Spiral 开发了 8 年 – 来自客户的反馈 – 来自“Big Vision”人员的意见 • 未通过 JROC • 或 JCIDS • 未通过 JTIC 认证 • 不确定是否通过 JTRS 认证 • AOR 中请求最多的功能 • JTACS 喜欢它 第一辆 ROVER II:一个相当有趣的故事:02 年 1 月 17 日,CW2 Chris Manuel(陆军绿色贝雷帽)突然造访 645 AESG。他说,他过去三个月一直在阿富汗的山洞里搜寻,休息了两周,然后又回来继续搜寻。他说,他的部队迫切需要获得捕食者的视频,以便他们“看到下一座山后面的情况”,以免将他的手下置于危险之中。关键人员集合完毕,与承包商讨论了需求,当天就在 Big Safari 办公室制定了解决方案。八天后(2002 年 1 月 23 日),解决方案(如上图所示)在 El Mirage 的捕食者测试设施进行了演示。CW2 Manual 被部署回阿富汗,将 ROVER 投入使用。ROVER 多次因拯救其部队的生命和协助杀死或俘虏敌方战斗人员而受到赞誉。影响 ROVER 设计的因素:兼容性 — 跨服务 ROVER 系列 -使用 DHS Tac ROVER 和 ROVER 4 传输网 ROVER - Net-T ROVER5 和 6 C2 ROVER 加密 — 类型 1 所有 ROVER 都有各种 -AES 加密级别 -TDES 大小重量 **互操作性挑战** 美国军方和执法机构在情报、监视和侦察 (ISR) 能力方面传统上分道扬镳。然而,对可以弥合这一差距的互操作解决方案的需求日益增长。 **从灾难中吸取的教训** 最近的灾难,如 9/11、卡特里娜飓风、加州野火、海地地震和漏油事件,凸显了 ISR 能力在应急情况下的重要性。 **L-3 通信公司的 ROVER 系统** 远程操作视频增强接收器 (ROVER) 系统通过向地面部队提供实时视频源,彻底改变了地面战争。该系统自 2004 年推出以来,已经历了多次升级,最新版本的 ROVER 6 配备了五波段收发器,加密功能也得到了改进。**VORTEX 系统** 视频定向交换收发器 (VORTEX) 系统是 L-3 Communications 开发的另一个先进的 ISR 平台。该系统配备了五波段收发器,并已通过固定翼飞机等多个平台的使用认证。**ROVER 6 功能** ROVER 6 系统拥有改进的加密功能、定向天线和空间/频率分集。它还支持多种波形,包括 CDL、战术和模拟。**战术 ROVER SIR v2.0** 战术 ROVER 系统的最新版本具有与 SIR 2.0 相同的功能,但加密功能得到改进,并配备了 Ku 波段下变频器天线。该系统目前正在生产中,并已交付给客户。总体而言,这些系统表明 L-3 Communications 致力于开发先进的 ISR 平台,以满足军事和执法机构不断变化的需求。C2 ROVER 是一款紧凑、功能强大的多用途无线电,已签订合同并交付了 8 台原型机。它具有两个独立的双向链路、全链路互连,并支持各种频段,包括 C/L/S/Ku/UHF。该无线电还包括使用 Type 1-1/AES/TDES 标准的加密功能。ROVER 元数据使用密钥长度值 (KLV) 格式进行标准化,该格式由运动图像标准委员会 (MISB) 控制。该无线电支持通过链路传输 KLV 元数据,并已提供此功能。未来的升级将包括对光标在目标 (CoT) 元数据的支持。ROVER 还具有使用时间数字加密标准 (TDES) 或高级加密标准 (AES) 的数字加密解决方案,最终计划使用 NSA Type 1 标准。该电台的 IP 网络功能使用 Net-T 软件,提供全双工、基于 IP 的网络节点,可用作 RIPN。ROVER 还将支持模拟和战术波形,包括 CDL、战术、VNW、模拟、BE-CDL 和 DDL 数据速率。无线电的工作温度范围为 -20°C 至 +70°C(带冷板),重量约为 10 磅。未来的更新包括增加 Tac ROVER-e“套件”,该套件将配备 SIR v2.5 套件组件,包括无线电、操作手册、多波段战术天线、电缆组、电源和 Vuzix 战术显示器。此外,文本还描述了 Tac ROVER-e 套件的拟议电缆组,其中包括各种连接器、电池和飞线。还概述了初步连接器布局,具有 10 针键填充卡口和“Mighty Mouse”(BNC)视频输出端口。最后,SWaP(尺寸、重量和功率)比较显示了 SIR v2.5 Tactical ROVER-e 的尺寸估计值及其与其他无线电的估计尺寸比较。SIR v2.5 Tactical ROVER-e SWaP 比较重量:- SIR v2.5:约 1.9 磅 - 带电池的 Tactical ROVER-e:约 2.3 磅重量增加的原因:- COMSEC 模块 - 额外的连接器和空间来容纳它 - 增加体积以容纳组件 - 隔离墙
图 1.雷达的电磁频谱使用情况(来自 [3])........................................................2 图 2.距离模糊的发生(来自 [3])......................................................................4 图 3.雷达回波([9] 之后).........................................................................................9 图 4.脉冲中的无线电波形(来自 [3]).........................................................................10 图 5.信号强度与目标范围(来自 [3]) ................................................................11 图 6。零到零和 3dB 波束宽度(来自 [3]) ..............................................................13 图 7。天线孔径尺寸(来自 [3]) ......................................................................14 图 8。线性阵列的零到零波束宽度(来自 [3]) .............................................................14 图 9。锥形照明(来自 [3]) .............................................................................15 图 10。大气衰减([11] 之后) .............................................................................16 图 11。波的压缩(来自 [3]) .............................................................................18 图 12。相对地面和机载平台的运动(来自 [3])......................................................................19 图 13。多普勒雷达的类型(来自 [4]).............................................................................20 图 14。消除模糊返回(来自 [3]).............................................................................24 图 15。视距(来自 [3]).........................................................................................25 图 16。PRF Vs.距离(来自 [3]).........................................................................................26 图 17。速度模糊([16] 之后).............................................................................27 图 18。最大。明确多普勒,λ =1 cm(来自 [3])..............................................27 图 19。最大值。明确多普勒,λ =3 cm(来自 [3])..............................................28 图 20。最大值。明确多普勒,λ =10 cm(来自 [3])..............................................28 图 21。具有最大值的不同 PRF 类别。目标范围(来自 [3])........................................30 图 22。由于高 PRF 而形成的无杂波区域(来自 [3]).............................................32 图 23。明确范围与高 PRF 模式下的旁瓣回波(来自 [3]) ......................................................................32 图 24。AN/APG-70(来自 [20]) ......................................................................................34 图 25。AN/APG-68(来自 [22]) ......................................................................................35 图 26。AN/APG-73(来自 [24]) ......................................................................................35 图 27。明确速度(来自 [4]) .............................................................................37 图 28。距离剖面(来自 [3]) .............................................................................................38 图 29。多普勒剖面(来自 [3]) .............................................................................................39 图 30。移除 MLC 后的距离剖面(来自 [3])................................................................39 图 31。八分之三波形([3] 之后)..............................................................40 图 32。使用 3:8 的目标检测(来自 [3]).........................................................................41 图 33。GMT 抑制(来自 [3]).........................................................................................42 图 34。近距离旁瓣杂波(来自 [3]).........................................................................42 图 35。理想模糊函数([15] 之后).........................................................................45 图 36。相干脉冲串,N=5(来自 [25]).........................................................................46 图 37。相干脉冲串的模糊轮廓图................................................47 图 38。PRF= 30 kHz N=15 脉冲占空比= 0.2..............................................48 图 39。PRF= 10 kHz N=15 脉冲占空比= 0.2..............................................48 图 40。PRF= 30 和 10 kHz 的轮廓比较 .............................................................49 图 41。PRF= 30 和 10 kHz 的椭圆比较 .............................................................49 图 42。模糊图,N=15 脉冲,PRF= 30 kHz .............................................................53