哈里·弗斯滕伯格和格雷戈里·马古利斯的数学遗产包含许多基于遍历理论、递归、李群和随机游动的发明。弗斯滕伯格引入了弗斯滕伯格边界和不相交性,马古利斯提出了超刚性概念和正规子群定理。马古利斯还证明了奥本海姆猜想,该猜想涉及三元二次方程的积分几乎解,弗斯滕伯格利用遍历理论证实了 Endre Szemerédi 关于任意长度算术级数存在的定理。最后两个例子很好地说明了两位获奖者如何展示概率方法的普遍性以及跨越不同数学学科界限的有效性,正如阿贝尔委员会的引文所指出的那样。
我们介绍了 Geomstats,一个用于非线性流形计算和统计的开源 Python 工具箱,例如双曲空间、对称正定矩阵空间、变换李群等等。我们提供面向对象且经过广泛单元测试的实现。除此之外,流形还配备了黎曼度量族,以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了在流形上进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持,即 NumPy、PyTorch 和 TensorFlow,从而实现 GPU 加速。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块来促进微分几何和统计学的研究,并使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
摘要:具有给定全局对称性 G 的量子系统中的状态可能对边界的存在很敏感,边界可能会保持或破坏这种对称性。在这项工作中,我们研究了共形不变边界条件如何通过纠缠不对称的视角影响 G 对称性的破坏,纠缠不对称是对称性破坏状态与其对称化对应状态之间“距离”的量词。通过利用二维边界共形场论 (BCFT),我们研究了有限和紧李群的对称性破坏。除了首阶项之外,我们还计算了子系统大小的次级校正,强调了它们对对称群 G 和 BCFT 算子内容的依赖性。我们进一步探索了全局量子猝灭后的纠缠不对称,其中对称性破坏状态在对称性恢复的哈密顿量下演化。在这种动态设置中,我们通过将图像方法扩展到具有非局部对象(例如可逆对称缺陷)的 BCFT 来计算纠缠不对称性。
我们介绍了 Geomstats,这是一个开源 Python 包,用于对非线性流形(例如双曲空间、对称正定矩阵空间、变换李群等)进行计算和统计。我们提供面向对象且经过大量单元测试的实现。流形配备了黎曼度量系列以及相关的指数和对数映射、测地线和并行传输。统计和学习算法提供了对流形进行估计、聚类和降维的方法。所有相关操作都被矢量化以用于批量计算,并为不同的执行后端提供支持——即 NumPy、PyTorch 和 TensorFlow。本文介绍了该软件包,将其与相关库进行了比较,并提供了相关的代码示例。我们表明,Geomstats 提供了可靠的构建块,既可以促进微分几何和统计学的研究,又可以使黎曼几何在机器学习应用中的使用更加民主化。源代码可根据 MIT 许可证在 geomstats.ai 上免费获取。
量子信息及其与组合学的相互作用。本书在某种程度上是这些问题的进展报告。对我们来说,最大的惊喜是代数图论工具的实用程度。因此,我们对此的处理比严格必要的更详细。其中一些是标准的,一些是旧东西,一些是为处理量子游动而开发的新材料(例如,可控性,强同谱顶点)。但组合学并不是万能的:我们还会遇到李群、各种数论和几乎周期函数。(因此,第二个惊喜是与我们的主题纠缠在一起的不同数学领域的数量。)我们在这里不处理离散量子游动(参见 [ ? ])。我们不处理量子算法或量子计算,也不处理有关复杂性、误差校正、非局部游戏和量子电路模型的问题。我们讨论了一些相关的物理学。我们重点关注那些在数学上有趣且具有一定物理意义的问题,因为这种重叠往往预示着成果丰硕。许多人对这些笔记提出了有益的评论,包括 Dave Witte Morris、Tino Tamon、Sasha Jurišic 及其研讨会成员 Alexis Hunt、David Feder、Henry Liu、Harmony Zhan、Nicholas Lai、Xiaohong Zhang、Soffia Arnadottir、Qiuting Chen……
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,因为在代表经典粗粒化量子版本的完全正、保迹映射下,单调性是必须的 [ 35 , 40 ]。从无穷小角度来看,作用量 φ 可以用 S + 上的基本矢量场来描述,从而提供酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(第 2 节将对此进行详细介绍),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u(H) 是 H 上有界线性算子空间 B(H) 的李子代数,具有由线性算子之间的交换子 [·,·] 给出的李积。特别地,可以证明 B(H)(具有 [·,·])同构于 U(H) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL(H) 的李代数。此外,已知 [9,15,26,27] GL(H) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
其中 ρ 是量子态,U ∈ U ( H ) ,φ U 表示每个单调度量张量 G 的等距同构,这是因为在完全正的、保迹映射下必须具有单调性,这代表了经典粗粒化量子版本 [ 35 , 40 ]。从无穷大的角度来看,作用量φ可以用 S + 上的基本矢量场来描述,从而提供了酉群李代数 u ( H ) 的反表示。这些矢量场用 X b 表示,其中 b 是 H 上的埃尔米特算子(有关更多信息,请参见第 2 节),对于所有单调度量张量来说,它们都是 Killing 矢量场,因为 U ( H ) 通过等距同构起作用。现在,李代数 u ( H ) 是 H 上有界线性算子空间 B ( H ) 的李子代数,具有由线性算子之间的交换子 [· , ·] 给出的李积。特别地,可以证明 B ( H )(具有 [· , ·] )同构于 U ( H ) 复数化的李代数,即 H 上由可逆线性算子组成的李群 GL ( H ) 的李代数。此外,已知 [ 9 , 15 , 26 , 27 ] GL ( H ) 作用于流形 S + ,更一般地作用于整个量子态空间 S ,根据
物理科学与工程 PE1 数学:数学的所有领域,包括纯数学和应用数学,以及计算机科学的数学基础、数学物理和统计学 PE1_1 逻辑与基础 PE1_2 代数 PE1_3 数论 PE1_4 代数和复几何 PE1_5 几何 PE1_6 拓扑 PE1_7 李群、李代数 PE1_8 分析 PE1_9 算子代数和泛函分析 PE1_10 ODE 和动力系统 PE1_11 偏微分方程的理论方面 PE1_12 数学物理 PE1_13 概率 PE1_14 统计学 PE1_15 离散数学和组合数学 PE1_16 计算机科学的数学方面 PE1_17 数值分析 PE1_18 科学计算和数据处理 PE1_19 控制理论与优化 PE1_20 数学在科学中的应用 PE1_21 数学在工业和社会生活中的应用 PE2物质的基本成分:粒子、核、等离子体、原子、分子、气体和光学物理学 PE2_1 基本相互作用和场 PE2_2 粒子物理学 PE2_3 核物理学 PE2_4 核天体物理学 PE2_5 气体和等离子体物理学 PE2_6 电磁学 PE2_7 原子、分子物理学 PE2_8 超冷原子和分子 PE2_9 光学、非线性光学和纳米光学
量子场论是描述几乎所有基础物理现象的现代理论框架。这包括基本粒子物理的标准模型,其中有电磁力、弱力和强力,而且很可能以某种方式包括暗物质和引力。量子场论与量子力学有着密切的联系,历史上,当人们清楚地认识到相对论版本的量子力学不一致时,量子场论就发展成为无限多自由度的量子理论。在现代理解中,量子场论实际上是非相对论量子力学的基础,后者在极限上遵循前者。还有一种非相对论版本的量子场论,它可以描述非相对论粒子的少体物理,但也可以很好地用于描述多体物理和凝聚态物质。另一个非常有趣的联系是量子场论和统计场论之间的联系。相对论量子场论所需的许多概念只有从统计物理学的角度才能正确理解,而且,同样的概念也可用于描述随机理论,其中波动不是量子起源,而是有不同原因。这甚至超越了物理学和自然科学。相对论量子场论与群论、对称理论也有有趣的交集。具体来说,各种李群在理解基本粒子物理标准模型的现象方面起着重要作用。这里还可以提到时空对称性的后果,如守恒定律或粒子实际上的基本概念。它与(量子)信息论还有一个非常有趣的关系,目前正在更详细地探索。未来几年,很有可能对量子场动力学有进一步的了解。
摘要:对称性 SU(2) 及其几何布洛赫球渲染已成功应用于单个量子比特(自旋-1/2)的研究;然而,尽管此类系统对于量子信息处理至关重要,但将此类对称性和几何扩展到多个量子比特(甚至只有两个)的研究却少得多。在过去的二十年里,两种具有独立出发点和动机的不同方法已被结合起来用于此目的。一种方法是开发两个或更多量子比特的酉时间演化以研究量子关联;通过利用相关的李代数,特别是所涉及的汉密尔顿量的子代数,研究人员已经找到了与有限射影几何和组合设计的联系。几何学家通过研究射影环线和相关的有限几何,得出了平行的结论。本综述将量子物理学的李代数/群表示视角和几何代数视角结合在一起,以及它们与复四元数的联系。总之,这可以看作是费利克斯·克莱因的埃尔朗根对称和几何纲领的进一步发展。特别是,两个量子位的连续 SU(4) 李群的十五个生成器可以与有限射影几何、组合斯坦纳设计和有限四元群一一对应。我们考虑的非常不同的视角可能会为量子信息问题提供进一步的见解。扩展适用于多个量子位,以及更高自旋或更高维度的量子位。