在这个瞬息万变的世界,英国必须能够可靠地获得我们所需的商品。境外的趋势可能会扰乱和改变对我国经济关键部门至关重要的进口流。近年来,地缘政治紧张局势大幅加剧。这一趋势已经迫使全球供应链进行重组,并对数十年来促进国际贸易发展的开放、基于规则的贸易方式提出了挑战。与此同时,我们看到气候变化和新技术对商品生产和运输的影响,以及对全球发达经济体所需材料性质的影响。在一个复杂而相互关联的世界中,这些变化将始终存在,并强调了与我们的企业和国际伙伴合作以增强全球复原力的重要性。
近年来,晶体管的尺度不断逼近物理极限,阻碍了计算能力的进一步发展。后摩尔时代,新兴的逻辑和存储器件成为扩展智能计算能力的基础硬件。本文综述了用于智能计算的铁电器件的最新进展。首先阐明了铁电器件的材料性质和电学特性,然后讨论了可用于智能计算的新型铁电材料和器件。全面回顾和比较了用于低功耗逻辑、高性能存储器和神经形态应用的铁电电容器、晶体管和隧道结器件。此外,为了为开发基于高性能铁电的智能计算系统提供有用的指导,本文讨论了实现超大规模铁电器件以实现高效计算的关键挑战。
量子化学(QChem)及其准确预测分子和材料性质的能力如今对于广泛的现代量子科学而言是不可或缺的。例如,它加深了我们对化学过程的理解,1 – 6 并推动了材料科学的发展。7 – 16 近年来,QChem 的成功不仅归功于理论和算法方面的重大进步,也归功于硬件计算能力的提高。事实上,几乎所有现代量子化学技术都依赖于多体波函数的紧凑表示(即有效存储)和有效操控 17 – 23 或相应的约化密度矩阵。24 – 28 特别是对于弱关联系统,即使在大规模下也可以常规获得有效和准确的解。29 – 32 相比之下,强关联问题仍然是一个关键挑战。量子计算或许是解决这一问题的一个有希望的方向
相变储能对能源的绿色、高效、可持续利用具有重要作用,利用相变材料储存太阳能,实现能量的时间和空间位移。本文综述了相变材料的分类及储能方向常用的相变材料,根据相变材料性质,列举了建筑中常用的相变材料及其封装方法,通过不同的封装方法强化热交换,解决材料泄漏问题,并通过对比分析总结出各种封装方法的优缺点,概述了宏封装和微封装对材料封装的影响,综述了不同封装方法的模拟和模型构建方法,致力于对建筑中相变材料和封装方法的选择进行比较分析,积极推动相变储能技术在建筑中的推广应用。关键词:综述,相变材料,热能储存,
摘要:本文旨在指出机身腐蚀的一些特性、外力对飞机蒙皮元素的影响以及它们对结构完整性的影响。腐蚀过程通常与飞机结构元素的疲劳有关,这是由许多因素引起的,例如载荷类型、材料性质、腐蚀环境等。本文的重点不是腐蚀过程,而是飞机机翼设计元素特有的载荷系数及其对关键结构元素腐蚀的影响。机翼腐蚀被认为是环境影响蒙皮和连接部件(铆钉、螺钉和焊接接头)受损表面保护的结果,这种影响是由机翼的静态和动态应力以及整体上各个结构元素的相互作用引起的。材料的疲劳进一步增强了各个结构元素的运行动态性。及早发现腐蚀过程对于飞机的整体安全通常至关重要。本文提出的建议是为了改进工作体系,确保飞机在抗腐蚀损伤方面的安全运行。
ASTM E-10 委员会关于放射性同位素和辐射效应的目标之一在委员会范围的一部分中概述:促进对材料性质和构成随辐射暴露而变化的研究。为了帮助实现这一目标,委员会定期赞助提供辐射效应信息的研讨会和出版物。本卷汇集了金属材料的辐射效应数据,分为四个部分:第一部分关于铁、碳钢和不锈钢,第二部分关于镍和钴合金,第三部分关于铝和钛,第四部分关于锆合金。E-10 委员会非常高兴赞助这次演讲。希望本书对读者了解正在进行的辐射效应工作,特别是与在反应堆结构中使用这些材料有关的工作,具有相当大的价值。预计随着 E-10 委员会获得更多数据,它们将以类似的卷册出版,并将补充每年出版的辐射对材料的影响系列,涵盖由 E-10 委员会赞助的辐射效应研讨会。G. W. POMEROY,E-10 委员会副主席。
理解和预测无机材料的特性对于加速材料科学和驱动能源,电子及其他方面的应用程序至关重要。通过多模式大语言模型(LLMS)将材料结构数据与基于语言的信息集成在一起,从而通过增强人类–AI相互作用为支持这些努力提供了巨大的潜力。但是,一个关键挑战在于将原子结构完全分辨到LLMS中。在这项工作中,我们引入了MatterChat,这是一种多功能结构感知的多模式LLM,将材料结构数据和文本输入统一为单个粘性模型。MatterChat采用桥接模块来有效地将预验证的机器学习间的原子势与验证的LLM保持一致,从而降低了培训成本并提高了灵活性。我们的结果表明,MatterChat显着提高了材料性质预测和人类相互作用的性能,超过了GPT-4等通用LLM。我们还证明了它在更先进的科学推理和逐步材料合成等应用中的有用性。
6.1. 引言 基础科学与工程领域中令人着迷且充满挑战的研究领域,如今是纳米技术领域科学所取得的进展和众多进步。 “纳米”一词源于希腊语,意为矮小或极其小,是指单位的十亿分之一(10-9)。纳米或 nm 是十亿分之一米,即 1 nm = 10-9 m = 10-3 μm = 10 Å。纳米科学与纳米技术展现出巨大潜力,将在不久的将来为人类带来许多发现,这些发现将彻底改变科学领域的所有技术进步。纳米科学被定义为研究原子、分子和大分子尺度上材料现象和操控的科学,其性质与更大规模的材料性质有显著不同。要了解这项新技术,重要的是要了解纳米科学的基本内容;纳米材料是什么;它们的不同物理和化学性质;如何人工生产;它们的应用及其对社会的影响。本章关于纳米科学,对这一相对较新的科学领域进行了广泛的概述和深入的了解,涵盖了上述所有方面
ASTM E-10 放射性同位素和辐射效应委员会的目标之一在该委员会工作范围的一部分中有所概述:促进对材料性质和组成随辐射暴露而变化的研究。为帮助实现这一目标,委员会定期赞助提供辐射效应信息的研讨会和出版物。本卷汇集了金属材料的辐射效应数据,分为四部分:第一部分铁、碳钢和不锈钢,第二部分镍和钴合金,第三部分铝和钛,第四部分锆合金。E-10 委员会很高兴赞助这次演讲。希望本书对读者了解正在进行的辐射效应工作,特别是与在反应堆结构中使用这些材料有关的工作,具有相当大的价值。预计随着 E-10 委员会获得更多数据,这些数据将以类似的卷册形式出版,并将补充每年出版的《辐射对材料的影响》系列,该系列涵盖了 E-10 委员会主办的辐射影响研讨会。GW POMEROY,E-10 委员会副主席。