I16 是一条位于 Diamond Light Source 的高通量、高分辨率 X 射线光束线。该光束线工作在 2.7-15 KeV 范围内,是一种专为研究单晶样品的共振和磁散射过程而优化的衍射设备 [1]。共振弹性 X 射线散射是表征材料的电子、磁性和结构特性的理想选择,因为它对原本较弱的散射过程具有增强的灵敏度,可提供光谱信息和化学选择性。I16 的主仪器是一台大型 6 圆 K 衍射仪,能够适应各种辅助环境。该光束线可完全控制其大部分能量范围内的入射光子偏振。它与大光子计数面积探测器和安装在 K 衍射仪上的真空线性偏振分析仪相结合,用于隔离和增强与有序现象相关的特定散射过程。
算法•假设:角度效应是PBPM 1。在pbpm(ph_ref)2。阅读pbpm数据(ph_mon)3。计算ph_ref和ph_mon 4。使用源点和BPM和PBPM之间的距离,调整电子束以将光子束对参考位置进行重新检查。5。重复步骤2至4
加拿大光源的生物医学成像和治疗设施包括两个梁线,它们覆盖了从13 kevup到140 KEV的X射线能量范围。梁线的设计侧重于临床前成像和兽医科学以及微束辐射疗法中的同步加速器应用。虽然它们仍然是两种光束线活动的主要部分,但最近的许多升级增强了梁线的多功能性和性能,尤其是对于高分辨率的微型造影实验。因此,用户社区已迅速扩展,以包括高级材料,电池,燃料电池,农业和环境研究的研究人员。本文总结了梁属性,描述了端站与检测器池一起描述,并介绍了用户可用的各种X射线成像技术的几个应用程序案例。
描述了钻石光源的多功能软X射线(Versox)Beamine B07的束线光学元件和端站。b07-b从弯曲磁铁源提供45-2200 eV范围内的中频X射线,可访问从李到y到y的所有元素原子的局部电子结构。它具有高通量X射线光电子体外镜头(XPS)和近边缘X射线吸收精细结构(NEXAFS)测量的终端站。b07-b具有从UHV到环境压力的压力(1 atm)的第二个终端群。这些终点站的组合允许对各种界面和材料进行研究。详细讨论了梁线和端积设计,以及它们的性能和调试过程。
光束线的设计旨在支持各种基础物理实验,这些实验旨在解答有关宇宙中物质的性质和存在的问题,并由同行评审分配访问权限和时间。由于这类实验几乎总是受到统计限制,因此光束线的设计旨在提供最高强度的脉冲中子,尤其是冷中子,同时还提供充足的地面空间来安装实验。
探测器、超大样本环境(≈3 2 1.5 m 3 )的定位能力光束线概念 AMP 光束线是一条相干和非相干小角和广角散射((c)-SAXS/WAXS)光束线,用于对真实条件下正在加工或操作的材料进行时间分辨的微束原位/操作研究。AMP 旨在测量材料的结构和动态,跨越从埃到微米的长度尺度,具有微米空间分辨率和几十微秒时间分辨率。其主要特性是能够容纳高达 3×2×1.5 m 3 的大型样本平台和辅助表征技术。这种大样本区域还可用于中等规模样本环境的多设置,能够在不同设置和随附的 X 射线束设置之间自动切换。
我们报告了在 Elettra 储存环上运行的先进光电效应实验光束线的主要特征,该光束线采用完全独立的双分支方案,通过使用奇卡恩波荡器获得,并能够保持线性和圆形模式下的偏振控制。本文介绍了所采用的新颖的技术解决方案,即:� a � 准周期波荡器的设计,可在较大的光子能量范围 � 10–100 eV � 上优化高次谐波抑制,� b � 通过低温冷却器在高热负荷下实现光学元件的热稳定性,以及 � c � 终端站互连设置,允许完全访问离束和在束设施,同时集成用户的专用样品生长室或模块。© 2009 美国物理学会。� DOI: 10.1063/1.3119364 �
摘要 - 已将宝石检测器和激活箔用于脉冲中子源的热束线的剂量测定。第一个是一个活跃的检测器,它利用源的脉冲性质,使用飞行技术进行测量。相同的检测器已成功地用于测量梁的轮廓。第二个是一种被动辐照方法,它独立确认了ISIS中子源的Emma和Rotax束线的测得的通量。它们具有不同的热光谱,第一个光谱是用水(300 K)和第二种液态甲烷(100 K)的。随后使用参考SRAM模块的单个事件效应测试对这两个特征的梁线进行了用于辐照微电子。表明结果是一致的,并且必须应用一个校正因子以将冷束线上的结果扩展到室温下的结果。
ELI-Beamlines 的 P3 装置被设想为一个实验平台,用于多个高重复率激光束,时间范围从飞秒到皮秒再到纳秒。即将推出的 L4n 激光光束线将以 1 次/分钟的最大重复率提供高达 1.9 kJ 的纳秒脉冲。该光束线将为高压、高能量密度物理、热致密物质和激光-等离子体相互作用实验提供独特的可能性。由于重复率高,将有可能在数据统计方面获得显著改进,特别是对于状态方程数据集。纳秒光束将与短亚皮秒脉冲耦合,通过照射背光目标或驱动回旋加速器装置产生高能电子和硬 X 射线来提供高分辨率诊断工具。
自 2019 年春季以来,瑞典隆德 MAX IV 实验室的 FinEstBeAMS 光束线已为用户提供了一套由电子分光计和用于稀释样品的离子飞行时间质谱仪组成的实验装置。该装置使用户能够研究原子、分子、(分子)微团簇和纳米粒子与短波长(真空紫外和 X 射线)同步辐射的相互作用,并跟踪这种相互作用引起的电子和核动力学。对 N 2 和噻吩 (C 4 H 4 S) 分子的测试测量表明,该装置可用于多粒子巧合光谱。通过线性水平和垂直偏振对 Ar 3 p 光电子谱的测量表明,也可以进行角度分辨实验。还展示了在同一实验过程中比较 Co 2 O 3 和 Fe 2 O 3 中 Co 和 Fe L 2,3 吸收边处稀释样品与固体靶的电子光谱结果的可能性。由于 FinEstBeAMS 光束线的光子能量范围从 4.4 eV 延伸到 1000 eV,因此可以在非常宽的光子能量范围内执行电子、离子和巧合光谱研究。