Polariton化学反应研究了光子与分子之间的强烈相互作用,近年来一直在越来越多的兴趣。这种日益增长的注意力的起源在于,当光与物质强烈相互作用时,它可以改变其物理和化学特性。虽然物理学家长期以来一直在研究这种现象1,主要是由于其在各个领域的潜力,从光放大2,3到Quantum Computing不等,但4,5在过去的十年中,化学界才开始专注于极化效应。6,即使在无机材料中存在杂交光 - 物质状态,也已经闻名了一段时间,只有在上个世纪末,也证明了这种强的耦合效果可以通过光腔增强。7这个发现对于偏振化学的发展至关重要。但是,对该领域的最新兴趣和丰富的兴趣来自意识到,通过调整光和化学系统之间的耦合,人们可能能够修改其性质,甚至可以控制化学反应8,例如,修改了间隔系统交叉点和锥形交叉点。9,10个示例包括修改pho-Toisomerization的产生11和有机反应的速率,12-14
扫描光电流显微镜传统上是使用聚焦光束进行的。1 - 4在这项技术的现代变体中,事件光的聚焦是通过尖锐的金属尖端实现的,如图1。这样的尖端充当光天线,将局部增强的近场增强到自由空间辐射。在实验中,扫描尖端,并使用位于样品外围的某个位置的电动触点来测量样品中产生的直流光电流。下面,我们将此技术称为扫描近场光电流显微镜或光电流纳米镜检查。也可以利用参与此类测量的仪器进行散射型扫描近场光学显微镜(S-SNOM)。在s-snom中,一个人检测到尖端而不是光电流的光片。实际上,一起执行S-SNOM和光电流纳米镜检查,提供了有关系统的互补信息。这种技术的组合已成功地应用于探针石墨烯和其他二维(2D)材料5 - 9的空间分辨率为≏20nm,这比衍射受限的传统方法好。最近的光电流纳米镜检查实验显示出区别的光谱共振和周期性干扰模式