八面体外壳。它具有最低温度的菱形晶格(三角形晶体系统,r3m),在-70°C时在-70°C下的正交晶格(B2mm),在5°C下以5°C的四方晶格(P4mm),并在120°C [30°C [3,4 4°C [3,4 4°C [3,4 c [3,4)。它也显示出滞后,在加热和冷却之间的过渡温度存在差距。在眼镜中也可以看到这样的过渡延迟,这意味着系统的一阶转变,其中系统需要时间和激活能才能完成过渡。在BTO中,据信激活来自与自发极化的不同比对相关的差异[5-7]。BTO中的铁电性来自晶格中的对称性破裂,在远距离库仑力和短距离排斥之间存在微妙的平衡
我们认为,最近在石墨烯双层和三层中观察到的自旋和谷极化的金属相支持手性边缘模式,这些模式允许自旋波沿着系统边界沿弹道传播而不反向散射。手性边缘行为源于狄拉克带中动量空间浆果曲率与位置空间中自旋纹理的几何相之间的相互作用。边缘模式薄弱地局限于边缘,具有对边缘磁化的详细概况的色散。这种独特的边缘模式特征减少了它们与边缘障碍的重叠,并增强了模式的寿命。模式传播方向在逆转山谷极化后会逆转,这种效果可在等异种偏振的迪拉克频段中明确可测试的几何相互作用。
摘要。通过跳动的心向反向散射的场的空间和时间演变,同时用连贯的光照亮了其宏观和微血管化。要执行这些血管化图像,我们基于对空间去极化的斑点场的选择性检测,主要通过多个散射生成的空间去极化斑点场的选择性检测。我们通过空间或时间估计来考虑斑点对比度的计算。我们表明,通过后处理方法,可以明显增加观察到的血管结构的信噪比,这意味着计算运动场,该方法允许选择从不同心跳时期提取的相似帧。此后来的优化揭示了血管微观结构,其空间分辨率为100μm。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jbo.28.4.046007]
pyroelectrics是一个物质类别,随着系统温度的变化而发生极化的变化。这种效果可用于从热成像和传感到废物热转化到热驱动电子发射的应用。在这里,我们回顾了薄膜pyroelectrics的研究和利用的最新进展。利用建模,合成和特征的进步为铁电性的一个较差的子场之一提供了前进的途径。我们介绍了pyrolectricity的复杂物理现象,简要探讨了该领域的工作历史,并不仅突出了直接测量这种影响的新进步,而且还强调了我们控制薄膜材料的能力如何改变我们对这一反应的理解。最后,我们讨论了薄膜薄膜薄膜式设备的最新进展,并介绍了未来几年可能遵循的许多潜在的新方向。
摘要:超极化的核磁共振(NMR)提供了一组方法,可以显着解决NMR的灵敏度问题。溶解动态核极化(D-DNP)提供了一种独特而通用的方法,可检测13 C NMR信号,其灵敏度通过几个数量级增强。D-DNP的扩展应用范围现在涵盖了自然13 C丰度时对复杂混合物的分析。但是,在该区域中,它仅限于代谢物提取物。在这里,我们报告了自然丰度时生物氟-urine-的第一个DNP增强的13 C NMR分析,为这种具有挑战性的样本提供了前所未有的分辨率和敏感性。我们还表明,可以通过标准添加程序检索有关多个靶向代谢物的准确定量信息。
1捷克科学学院生物物理学研究所,Královopolská135,612 00 Brno,捷克共和国Brno 2捷克高级技术研究所,Catrin,Catrin,Palacký大学,K例科夫斯科夫斯科夫斯科夫斯科佛511/8 Ostrava,17。Listopadu2172/15,708 00 Ostrava-Poruba,捷克共和国和联合优先的作者。*对应作者:Miroslav Krepl电子邮件:krepl@ibp.cz摘要由RNA和DNA链形成的抽象混合双螺旋(通常称为混合双链体或杂交),在转录和反向转录等生物学过程中至关重要。它们对于他们在CRISPR基因编辑和纳米技术中的应用也很重要。,尽管它们具有重要意义,但杂种很少以原子分子动力学方法进行建模,并且没有基准研究系统地评估了力场的性能。在这里,我们介绍了使用现代和常用的成对添加剂和可极化的核酸力场的杂种进行广泛的基准研究。我们的发现表明,任何可用的力场选择都没有准确地重现混合动力的所有特征结构细节。琥珀色力场无法填充DNA链的C3'-endo(北)冰球和低估的倾斜度。charmm力场准确地描述了C3'-endo冰球和倾斜度,但显示了基对的不稳定性。可极化的力场与准确再现螺旋参数的努力。某些力场组合甚至表现出RNA和DNA参数之间的明显冲突。在这项工作中,我们对混合DNA/RNA双链体的力场性能进行了坦率的评估。我们为选择可利用的力场组合提供指导,并突出显示潜在的陷阱和获得最佳性能的最佳实践。引言基因表达过程不可避免地涉及转录过程中混合RNA和DNA双链体(杂种)的形成,而新鉴定的RNA链暂时将基础与DNA模板配对。1在逆转录期间发生相反的过程,
对冲。目前,美国的做法是应对三种意外情况:地缘政治(例如,突然的政治重组导致出现新的对手)、技术(例如,现有弹头或运载系统出现严重问题)和技术(例如,新技术的军事应用,为美国带来新的核需求)。在一个更加多极化的世界里,地缘政治和技术意外的可能性增加,恢复原状可能不够。美国可以合理地预测未来几年可能出现的“意外”,决定愿意接受哪些风险,并试图减轻其余风险。这需要具备快速设计、认证和制造满足潜在新核需求所需武器的常备能力。缓解战略还有另外一个价值:它们表明美国决心确保其威慑的有效性,尽管这一点还存在疑问。
电子邮件:tereza.smejkalova@fgu.cas.cz简介由Grin Genes编码的N-甲基-D-天冬氨酸受体(NMDARS)是离子型谷氨酸受体,它们是中枢神经系统中几乎所有兴奋性突触的离子谷氨酸受体。经典的NMDAR具有特征性的生物物理特征,需要两种激动剂(谷氨酸和甘氨酸/ D-丝氨酸)的结合,在静息膜电位上,Mg 2+的强阻滞,高Ca 2+渗透性,相对较慢的激活和减速性动力学Kinetics [1]。这些特性使NMDAR可以作为突触前谷氨酸释放和突触后去极化的巧合探测器,从而去除Mg 2+块。所得的NMDAR介导的Ca 2+流入是一个关键信号,该信号调节了突触强度的活动依赖性变化[2],它是神经回路及其
量子系统的幺正演化保持了其相干性,但系统与其环境之间的相互作用会导致退相干,即系统中存储的量子信息被降解的过程。植入氟化物晶体的自旋极化正电荷介子实现了这种相干量子系统,介子和最近邻氟核自旋的纠缠导致介子极化的振荡时间依赖性,可以检测和测量。在这里,我们表明,更远的核自旋的退相干效应可以定量建模,从而可以非常详细地描述将介子-氟“系统”与其“环境”耦合的退相干过程,并使我们能够在量子信息降解时跟踪系统熵。这些结果显示了如何精确量化植入氟化物晶体中量子纠缠态的介子的自旋弛豫。