“已发表的研究表明,可以通过使用紫外线在荧光图中产生极性,而荧光量分散起着关键作用的溶剂类型。在实验过程中,我们发现紫外线下丙酮中的荧光量会产生强烈的极性信号,表明形成了活性自旋态。另一方面,在苯中,这种现象在环己烷中不太明显,几乎不存在。观察到的现象是理解周围环境如何影响极地形成的现象。”实验是通过理论计算支持的,该计算表明,在荧光拉芬的自由基位点附近形成了极性,它们与丙酮分子强烈相互作用。丙酮的紫外线辐射后,将溶剂的电荷转移到荧光学中的自由基中心,从而产生偏光型的短暂磁状态。
在可极化的材料中,电子电荷载体与周围离子相互作用,从而导致准粒子行为。所产生的极性子在许多材料特性中起着核心作用,包括电运,光,表面反应性和磁敏感,以及极性通过这些宏观特征进行间接研究。在这里,非接触原子力显微镜(NC-AFM)用于在单一准粒子极限下以Fe 2 O 3的形式图像极性图像。Kelvin探针力显微镜(KPFM)和动力学蒙特卡洛(KMC)模拟的组合表明,可以通过Ti掺杂来显着增加电子极性的迁移率。密度功能理论(DFT)计算表明,从极化自由载体状态从极化自由载体状态的过渡可以在电子极性迁移中起关键作用。相比之下,孔极化物的流动性明显较小,并且通过捕获中心进一步阻碍了它们的跳跃。
经常使用极性聚乙烯(PE)引入极性基团,以增加PES极性以实现,例如与其他极性材料的兼容性。这可以通过聚合后的修饰或直接通过乙烯基单体(如丙烯酸酯,乙烯基酮或其他)共聚来实现。1-7后来的方法产生侧链官能团。通过比较,聚乙烯链生长过程中一氧化碳掺入可以提供链内酮基团。除其他外,少量此类酮单元可以以理想的光降解性赋予材料,以减少不雄厚的聚乙烯废物的有问题的环境持续性。8可以长期以来一直在乙烯聚合过程中掺入少量的一氧化碳,从而访问与链型酮单元(酮)的线性HDPE型聚乙烯(酮),因为通常由于乙烯-CO共聚的结果而在乙烯聚合过程中长期存在,因为乙烯-CO共聚的结果是在交替的多酮中,因此由于合成了二氧化碳的偏好。9,10此类酮PE材料仅通过非替代共聚11-13才通过晚期磷酸苯酚14-20 Ni(II)配合物催化。由于它们的高分子量(高达M W 400.000 g mol -1; m n 200.000 g mol -1),这些聚合物是可以加工的,并且在其机械性能中具有与商业高密度聚乙烯(HDPE)的机械性能相同。188同时,这些材料由掺入的链内羰基提供了光降解。11,18
量子密钥分布(QKD)是使用量子系统在两个方之间安全地传达共享加密密钥的想法。与经典的加密方法相反,QKD利用基本量子属性(例如叠加和纠缠)来以保证安全性来编码信息。大多数QKD系统基于在光纤中发送光子,其中光子的极性是用于编码信息的量子属性。用来这样做的不同算法称为QKD协议。本论文旨在使用四个常见的QKD协议来构建一个教育工具,以模拟简单的QKD系统,在此过程中,用户可以在其中改变系统参数并研究其对结果的影响。此外,目的是能够产生足够准确的模拟结果,以提供对真实实验设置的执行方式的第一个近似值。该程序是使用Qiskit库在Python构建的,所有所需的功能均在图形接口中实现。对于实施的协议之一(BB84),将仿真结果与三个QKD实验的实验数据进行了比较,这表明该程序能够产生实际实验设置的有用的首先近似。通过允许模拟更复杂的系统,可以进一步改进程序。
G蛋白 - 偶联受体(GPCR)的粘附家族由N末端较大的细胞外区域定义,该区域包含各种与粘附相关的结构域和高度保守的GPCR-Autoprototepotepotepotepotion-apoprotey-oprotote-oprotote-oprotote-oprotote-oprote-oprote-oprote-oprote-oprote-oprote-oprote-opersy-to诱导(增益)结构域,后者是位于典型的七跨透明型跨型跨型跨型跨型跨型跨型区域的后者。这些受体被广泛表达,并参与了各种功能,包括发育,血管生成,突触形成和肿瘤发生。gpr125(ADGRA3)是孤儿粘附GPCR,已显示可调节胃部胃肠杆中的平面细胞极性,但其生化特性和在哺乳动物细胞中的作用仍然很少仍然未知。在这里,我们表明,当在犬肾上皮MDCK细胞和人类胚胎肾Hek293细胞中表达时,人类GPR125可能会经历顺式蛋白质解。在受体生物合成的早期阶段,裂解似乎发生在增益域内的非典型GPCR蛋白水解位点。产品,即,N-ter-minal和c末端片段似乎在自蛋白解析后保持相关,如其他粘附GPCR所观察到的。此外,在极化MDCK细胞中,GPR125专门募集到质膜的基底外侧结构域。募集可能需要C末端PDZ障碍 - GPR125的结合基序及其与细胞蛋白DLG1的相互作用。敲低的GPR125以及DLG1的敲低导致在MDCK细胞的Matrigel 3D培养物中形成具有多个Lu-ens的异常囊肿。与多弹性表型一致,在GPR125 -KO MDCK细胞中,有丝分裂的纺锤体在囊肿发生过程中不正确。因此,基底外侧蛋白GPR125是一种可自启动的Adhe-Sion GPCR,似乎在上皮细胞中的脂质极性中起着至关重要的作用。
