摘要:基于非线性动态逆(NDI)设计了纵向自动着舰系统(ACLS)控制律,以实现抑制尾流、解耦横向状态和跟踪动态期望着陆点(DTP)的目的。首先,建立F/A−18飞机六面进近非线性着舰模型,获取气动、操纵面、极限状态等参数。其次,采用俯仰角控制跟踪期望纵向轨迹的策略。基于自适应NDI设计了自动功率补偿系统(APCS)、俯仰角速率、俯仰角和垂直位置控制环路,并详细推导了稳定性分析和原理描述。采用频率响应法设计了甲板运动补偿(DMC)算法。第三,通过遗传算法对控制参数进行优化。提出了一种综合考虑飞机速度、迎角(AOA)、俯仰速率、俯仰角和垂直位置的适应度函数。最后,在半实物仿真平台上进行了综合仿真。结果表明,所采用的自动着陆控制律既能达到良好的性能,又能抑制气流尾流和横侧耦合。
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列越来越大的实验,以研究船舶框架和格架在横向载荷下的塑性行为。初始测试以单个框架进行,固定在端部并在中心或端部附近施加小块载荷,以便可以研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,在 6.8m x 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。已对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和弯曲)与整体塑性破坏之间存在许多有趣的关系。讨论了对设计(尤其是基于目标的设计)的影响。
地表沉降是机械化隧道施工中的一个重要参数,应在开挖前确定。机械化隧道施工引起的地表沉降分析是一个具有各种不确定性的岩土工程问题。与确定性方法不同,可靠性分析可以考虑地表沉降评估的不确定性。在本文中,利用基于遗传算法 (GA) 的可靠性分析方法(二阶可靠性方法 (SORM)、蒙特卡洛模拟 (MCS) 和一阶可靠性方法 (FORM))来建立地表沉降可靠性分析模型。具体而言,对于大型项目,极限状态函数 (LSF) 是非线性的,很难基于可靠性方法应用。为了解决这个问题,GMDH(数据处理组方法)神经网络可以估计 LSF,而无需对函数形式做出额外的假设。在本文中,GMDH 神经网络被改编以获得 LSF。在 GMDH 神经网络中,尾孔注浆压力、隧道底板地下水位、深度、平均渗透率、距竖井的距离、俯仰角、平均表面压力和尾孔注浆填充百分比被用作输入参数。同时,表面沉降是输出参数。使用来自曼谷地铁的现场数据来说明所提出的可靠性方法的能力。
本文介绍了部分为船舶结构委员会项目 # 1442 - 船体结构设计的塑性极限状态调查而进行的实验研究。该研究计划包括一系列规模越来越大的实验,以研究船舶框架和格架在横向载荷作用下的塑性行为。初始测试以单个框架进行,固定在两端,并在中心或两端附近施加小块载荷,以便研究两种形式的塑性破坏,即弯曲和剪切。在测试了八个单个框架后,实验继续测试两个小格架(3 个框架连接到一个板面板),然后测试两个大格架(9 个框架加上两个纵梁,连接到 3 个板面板,位于 6.8mx 2.46m 的面板中)。描述了实验程序、数据传感器和全部结果。对框架进行了广泛的 ANSYS 有限元分析,并进行了一些比较。研究发现各种屈曲机制(剪切屈曲、腹板压缩屈曲和断裂)与整体塑性坍塌之间存在许多有趣的关系。本文讨论了对设计(尤其是基于目标的设计)的影响。
(Benson、Downes 和 Dow 2011;J. Paik 等人 2005;J. Paik 2009;J. Paik 等人 2007;Rigo 等人 2003),拉伸设计方法一直被忽视。无法有效预测拉伸连接的强度和延展性,对使用现代极限状态设计开发轻质铝结构具有严重影响。Smith 方法等渐进式破坏方法需要预测结构元件的载荷-缩短和载荷-延伸曲线,但我们缺乏任何切实可行的方法来预测焊接铝结构的载荷-延伸曲线。直接应用有限元法已被证明是一种困难的方法,需要比板厚度小得多的网格离散化(Wang 等人 2007;Dørum 等人 2010)。此外,如果要在模型中使用壳单元,则需要自定义单元丰富。除了学术研究团体或专业咨询机构外,此类技术尚未实用。迄今为止开发的技术仅在土木工程结构常见的细节类型上得到验证。因此,海洋结构工程师目前缺乏实用工具和实验数据来设计完全考虑焊缝不匹配影响的结构。
b'abstract。出租车型迁移\ xe2 \ x80 \ x93cumpumption模型,占信号依赖性元素的核算,如u t d d d .u.v //,v t d v uv给出,以适当平滑的函数w \ xc5 \ x920; 1 /!r,以至于.0上> 0; 1/,但除0 .0/> 0的0.0/ d 0外。为了适当地应对包括扩散的变性性,本研究分别检查了线性方程的Neumann问题v T d v c r .a.x; t / v / c b.x; t/v并建立了一个关于非负溶液的点阳性下限如何取决于最初数据和质量的质量以及a和b的集成性特征。此后,这是在衍生上上述方程的全局解决方案的衍生结果的关键工具,在正时为正时平滑而经典,这仅仅是假设在两个组件中适当的常规初始数据是非负的。除此之外,这些溶液被认为是稳定在某些平衡方面的,并且由于差异的变性,作为定性效应,是一种定性效应,第二个组件的初始小度的标准被确定为该极限状态的原始状态足以使其在空间上是非固有的。”
b'abstract。出租车型迁移\ xe2 \ x80 \ x93cumpumption模型,占信号依赖性motilies的占主导地位,如u t d d d .u.v //,v t d v uv所述,用于适当平滑的函数w \ xc5 \ x920; 1 /!r,以至于.0上> 0; 1/,但除0 .0/> 0的0.0/ d 0外。为了适当地应对包括扩散的变性性,本研究分别检查了线性方程的Neumann问题v T d v c r .a.x; t / v / c b.x; t/v并建立了一个关于非负溶液的点阳性下限如何取决于最初数据和质量的质量以及a和b的集成性特征。此后,这是在衍生上上述方程的全局解决方案的衍生结果的关键工具,在正时为正时平滑而经典,这仅仅是假设在两个组件中适当的常规初始数据是非负的。除此之外,这些溶液被认为是稳定在某些平衡方面的,并且由于差异的变性,作为定性效应,是一种定性效应,第二个组件的初始小度的标准被确定为该极限状态的原始状态足以使其在空间上是非固有的。”
a)当根据表F3V1A/H2V1A确定所有风险因素得分的总和时,风险评分为20或更少; b)不承受最终的极限状态风压超过2.5kpa; c)仅包括符合2047的窗口。这被认为包括4055风分类N1W,N2W,N3W,N4W,N4W,C1W和C2W,不包括4055 Wind Clastications,N5W,N6W,N6W,C3W和C4W。超过2.5kpa最终极限状态风压力且不超过5.77kpa终极极限状态风压的防水应用超出了该认证的范围,并且遵守对天气的范围,受监管机构的特定地点设计和批准。参考A6。3。对于9级建筑物2级建筑物,Duragroove™墙壁覆层系统适用于固定在木螺柱框架上时仅使用C型耐火结构。4。符合FRL的依赖性取决于根据A3中概述的Innova Duragroove™壁盖系统技术手册所构建的系统。与评估系统的任何偏差都不构成此一致性证书的一部分。a)对于木材和钢制框架应用,如果将duragroove™壁板系统用作墙壁系统的一部分,则壁系统将达到FRL 60/60/60,而Duragroove™壁覆层则与1层16mm GTEK™Fired fires fires fires fires the Electressiide一起安装。在内侧,将1层GTEK™石膏板安装为内壁衬里。5。7。8。参考FRL系统的A3。b) For timber and steel framing applications, if the Duragroove™ Wall Cladding System is used as part of a wall system, the wall system achieves an FRL 90/90/90 when Duragroove™ Wall Cladding is installed in conjunction with 2 layers of 16mm GTEK™ Fire and Wet Area Plasterboard on the external fireside where joints in the second layer are to be staggered relative to joints in the第一层或确保石膏板第一层中的接头被第二张纸绑住。在内侧,将安装1层10mm GTEK™石膏板作为内壁衬里。与1级和10级建筑物和结构有关的外墙的施工方法必须遵守ABCB住房规定的第9.2部分。结构认证仅限于覆层,不包括子结构。Duragroove™墙壁覆层系统必须根据A3节中的适当跨度表固定在结构上足够的外部壁框架上。结构支持成员是根据项目的需求分别设计和设计的。在所有情况下,都要求墙壁覆层系统合并; a)根据AS 1684或AS 1720.1建造的木材框架;或b)根据纳什(Nash)标准的住宅和低层钢框架,第1部分:设计标准;或c)符合上述最低要求和其他标准的框架,以及适用的澳大利亚建筑守则6。9。10。在所有装置中,面板的下侧与下面的地面水平的底面之间的最小间隙必须符合ABCB住房规定第7.5.7部分中的规格。Duragrove™壁盖系统适用于在指定的丛林大火易于面积的建筑物上,需要在AS 3959:2018(由州和领土变化)(由州和领土变化)建造时,直至BAL – FZ,直至BAL – FZ,均为BAL – FZ(由A3中的A3中的1级建筑物建筑物,或一堂1级建筑物建筑物,或一堂1级建筑物,或一堂1级建筑物,或一堂1级建筑物,或一台1级建筑。符合BAL Low-FZ的依从性仅限于实现30/30/30的FRL的测试系统。建筑设计师有责任确保按照AS 3959-2018实现合规性。在新南威尔士州,Duragroove™墙壁覆层系统适用于指定的灌木丛易受的区域中的建筑物:a)用于1级建筑物,2级建筑物,3级建筑物,建筑物的4级建筑物或10A级建筑物或10A级建筑物,当时是按照AS 3959:2018的规定,除了通过计划为Bush-40 bush-40,该建筑物是根据3959:2018进行的。b)对于9级建筑物,这是一个特殊的防火目的,位于灌木丛攻击水平(BAL)的区域中,不超过BAL – 122.5,根据AS 3959:2018确定。使用认证的产品/系统的使用受这些限制和条件的约束,必须与下面的认证范围一起阅读。
混凝土中氯离子的侵入通常用菲克扩散方程来表示,以实际估算混凝土结构的使用寿命。在日本土木工程协会制定的《混凝土结构标准规范》中,混凝土中钢筋部分的氯离子含量达到指定阈值的状态被定义为结构耐久性的极限状态之一 [1]。在 JSCE 方法中,表面氯离子含量被用作混凝土中氯离子扩散的边界条件。它是根据距离海岸线的距离经验确定的。扩散系数是根据混凝土的水灰比和水泥类型根据混凝土性质来估算的。之前的许多研究已经对表面氯离子和扩散系数进行了研究。通过快速氯离子渗透试验研究了混凝土的抗氯离子渗透性 [2]。非饱和混凝土表皮中的氯离子渗透与混凝土本体中的氯离子渗透不同 [3]。长期暴露在氯离子中,氯离子的扩散系数会降低 [4]。混凝土中氯离子的扩散系数是氯离子渗透混凝土的主要因素。本文研究了两种扩散系数模型,它们是根据风洞试验获得的混凝土中氯离子的分布情况实验得出的:平均扩散系数 D 和时间相关扩散系数 D ( t ) [5,6]。本文研究了强度之间的关系
摘要。通过分析出版物和研究,发现空间杆晶格系统的空间网格结构的特征是它们的有效静态行为。构造结构的应力 - 应变状态,特别是平板,可以显着取决于许多因素:基础电池的形状,其依赖于支撑物(墙壁,柱子)的方式,支撑位置的排列方法以及平板的厚度。作为研究分析的结论,可以说,影响结构材料能力的这些因素之一(力调节剂)的研究很重要。有限的空间网格结构元素模型,这些模型在支持结构的列的布置上有所不同。柱的布置以三种方式进行:列位于平板的角落;柱位于平板的两个平行侧;两侧的平板4.5 m内部位置。也就是说,列定位的方法是平板元素中力的调节因子。列布置的变体可用于确定静态行为最有效的模型。因此,这个最有效的模型也将是最少的物质密集型模型,即它的重量最低。确定了来自考虑变体的最合理(有效)模型。效率取决于更合理的应力 - 应变状态的标准。根据第一和第二组的极限状态选择元素横截面的选择。计数每个模型的重量,并确定以最低材料容量为特征的模型。根据材料容量的标准,空间网格结构的最有效模型是模型3,由4.5 m内部的4列支撑。