相互作用包括π-π、[1]氢键[2]和范德华力[3]等。最近,阳离子分子与石墨烯中离域π电子之间的阳离子-π相互作用被认为是另一种重要的分子-石墨烯相互作用。Xie等人证实了罗丹明染料和石墨烯等π共轭体系之间的阳离子-π相互作用,这种相互作用导致罗丹明分子的荧光发射降低,因为激发的染料分子通过罗丹明染料/石墨烯界面上的非辐射途径衰变。[4]另一方面,Tang等人报道了通过阳离子-π相互作用锚定在石墨烯片上的罗丹明B分子在制备PVA /石墨烯复合材料时有助于石墨烯在聚乙烯醇(PVA)中的分散。 [5] 分子-石墨烯阳离子-π 相互作用的一个显著影响是分子中功能阳离子对石墨烯的掺杂。[6]
对于微尺度 4D 光响应致动器,光在两个方面至关重要。首先,底层的增材制造技术依赖于由光吸收触发的光聚合过程。其次,光的吸收可作为驱动刺激。这两种吸收可能会发生冲突。虽然微结构需要在驱动波长下具有强吸收,但这种吸收不应干扰制造过程的吸收。本文提出了一种简单的策略来克服这些限制,并允许制造可以在不同波长的光下驱动的多光响应 3D 微结构。选择双光子 3D 激光打印作为制造技术,液晶 (LC) 弹性体作为功能材料。第一步,使用对齐的 LC 墨水配方制造 3D 微结构。然后,通过交换过程将多达五种不同的染料成功地并入 LC 微结构中,这些染料的吸收范围覆盖整个可见光区 (400-700 nm),从而可以通过使用合适的波长进行照射来实现可编程驱动。此外,通过结合表现出正交吸收的染料,可以展示波长选择性驱动。
摘要:光合生物将离散的集光复合物组织成大规模网络,以促进高效的光收集和利用。受大自然的启发,本文使用合成的 DNA 模板引导染料聚集体与菁染料 K21 形成离散的分支光子复合物和二维 (2D) 激子网络。DNA 模板的范围从四臂 DNA 瓦片(每臂约 10 纳米)到具有不同几何形状和不同尺寸的二维线框 DNA 折纸纳米结构,最大可达 100 × 100 nm 2 。这些 DNA 模板染料聚集体表现出强耦合的光谱特征和离域激子特性,从而实现高效的光子收集和能量传输。与在单个 DNA 瓦片上模板化的离散分支光子系统相比,互连的激子网络的能量传输效率提高了约 2 倍。这种自下而上的组装策略为创建具有复杂几何形状和工程能量路径的二维激子系统铺平了道路。
量子点(QD),半导体纳米晶体的大小为1 - 100 nm,已成为生物成像中的革命性工具,可窥视细胞和分子水平的生物生物的复杂工作。1,2生物成像中QD的采用是由其无与伦比的光学特性驱动的,包括尺寸依赖性的效,特殊的光稳定性和高量子产率,这些量子集体超过了传统的uorescent染料和增强分辨率,稳定性,稳定性,以及在成像应用中的特定城市的能力。3,4与传统的染料相比,QD的特殊光稳定性尤其显着,这些染料易于光漂白。This allows for prolonged imaging sessions without signal degra- dation, ensuring consistent and high-quality images.Addi- tionally, QDs reduce the risk of phototoxicity to biological samples, making them safer for long-term observation.另外,QD的表面可以通过生物偶联技术通过各种生物分子(例如抗体,肽或核酸)功能化。这可以实现具有高特定城市和多功能性的生物结构或过程的特定特定的成像,这特别是
摘要:纺织业是第二大水密集型行业,并产生了大量的废水。即使在较低的浓度下,纺织品废水中存在的染料和重金属也会对环境和人类健康造成不利影响。最近,由于纳米词/添加剂在聚合物基质中的掺入膜性能增强,混合基质膜引起了极大的关注。这项当前的研究研究了ZIF-8/Ca膜对去除染料的疗效和实时纺织业流出物的处理。最初,使用探针超声仪合成ZIF-8纳米颗粒。XRD,FT-IR和SEM分析证实了晶体和六角形ZIF-8纳米颗粒的形成。将ZIF-8纳米颗粒分散到乙酸纤维素基质中,并使用“相浸入法”制备膜。使用FT-IR和SEM分析对膜进行了表征,该分析认可ZIF-8在聚合物基质中的不体化。后来,通过染料去除研究验证了ZIF-8/Ca膜的功效。对晶体紫,酸红色和反应性黑色的染料去除研究表明,膜的去除效率约为85%,并且研究进一步扩展到实时纺织流出的处理。关于纺织流出物的研究盛行,ZIF-8/CA膜也熟练地消除了化学氧需求(COD)〜70%,总有机碳(TOC)〜80%,以及诸如铅,铬和含水量的重金属,以及从纺织废水中获得的含量,并且证明是对纺织品的效果。