声学 FLEX 实验室由于空间内活动而自然非常嘈杂。在墙壁和天花板上安装吸音板,以降低噪音并减少声音向相邻空间的传播。如果 Flex 实验室与声学敏感空间接壤,外墙的 STC 等级应至少为 50。机械 电力应通过架空母线提供,以保证未来的灵活性。压缩空气、气体和水可能最好分布在架空位置,以便重新配置。可能需要蒸馏/反渗透水供应。在规划未来灵活性的同时,逐个项目验证具体需求。
建议引用推荐引用周,buxiang;黄,魏; Zang,Tianlei(2023)“考虑共享存储和灵活负载的微电网的强大最佳调度”,《电力科学与技术杂志》:第1卷。38:ISS。2,第6条。doi:10.19781/j.issn.1673-9140.2023.02.006可在:https://jepst.researchcommons.org/journal/vol38/iss2/6
摘要 聚对苯二甲酸乙二醇酯 (PET) 是一种理想的柔性 PCB 基材,具有成本低、生物相容性好、光学透明、易于加工和可回收等特点。这些优势与行业趋势特别一致,即电子产品无缝融入日常用品中。虽然 PET 与传统回流工艺大体不兼容,但光子焊接能够克服这种低温材料的挑战。光子焊接是一种快速兴起的方法,它依靠高强度广谱光(而不是热对流)选择性地加热焊料和电子元件,而不会损坏光学透明基材。在这项工作中,我们使用符合 SMEMA 标准的在线工具,演示了 SAC305 焊料合金的光子回流,以在 PET 芯柔性 PCB 上组装 0201 LED 元件。说明了光子工具固有的节能和产量优势,特别关注所得焊点的质量和一致性。加速热老化后验证焊点的功能完整性,并以工艺产量来表征可重复性。所得焊点的 X 射线显微镜和 SEM 横截面成像显示出坚固的金属间区域和低空洞密度。这些结果表明,光子焊接是一种实用的制造途径,可以实现 PET 柔性板独有的产品设计可能性。关键词:光子焊接、柔性混合电子器件、温度敏感、低温焊接、高通量焊接、闪光灯、LED。引言柔性印刷电路板 (flex PCB) 提供了广泛的设计可能性和用例,特别是在产品外形和减轻重量很重要的情况下。可穿戴消费电子产品是柔性 PCB 最明显的应用领域之一;健康监测 [1-3]、保形室内照明 [4] 和便携式显示器 [1, 5] 都因柔性 PCB 技术而得到了显著发展,而柔性连接器几十年来已在笔记本电脑和手机中无处不在 [6, 7]。此外,柔性 PCB 是一系列潜在颠覆性新技术不可或缺的一部分,包括食品包装监控 [8]、增强现实 [9-11] 和基于人造皮肤的生物识别传感器 [3]。
作为驱动力,诱导物理或化学电子转移过程来促进催化。[1–3] 自从机械催化被首次提出以来,[4] 它已被广泛应用于材料合成、[5] 水处理、[6] 回收或其他自由基相关化学等各个领域。[7] 近年来,利用压电/热电/铁电半导体的表面极化电荷,压电催化是一种新型的机械催化,已见报道,可通过机械刺激直接实现电化学反应。[8] 变形的压电/热电/铁电半导体的极化可以增强自由电荷和束缚电荷的能量,促进载流子的分离,增加参与催化反应的激发电荷的寿命。 [9,10] 压电催化不仅可以利用环境中的机械振动(如风或波浪),还可以利用工业系统中的冗余振动进行催化。因此,压电催化被认为是一种有前途的绿色机械催化。然而,压电、热电或铁电效应仅表现在具有非中心对称结构的压电材料中,例如纤锌矿结构,[11] 这极大地
Yifei Luo, Mohammad Reza Abidian, Jong-Hyun Ahn, Deji Akinwande, Anne M. Andrews, Markus Antonietti, Zhenan Bao, Magnus Berggren, Christopher A. Berkey, Christopher John Bettinger, Jun Chen, Peng Chen, Wenlong Cheng, Xu Cheng, Seon-Jin Choi, Alex Chortos, Canan Dagdeviren, Reinhold H. Dauskardt, Chong-an Di, Michael D. Dickey, Xiangfeng Duan, Antonio Facchetti, Zhiyong Fan, Yin Fang, Jianyou Feng, Xue Feng, Huajian Gao, Wei Gao, Xiwen Gong, Chuan Fei Guo, Xiaojun Guo, Martin C. Hartel, Zihan He, John S. Ho, Youfan Hu, Qiyao Huang, Yu Huang, Fengwei Huo, Muhammad M. Hussain, Ali Javey, Unyong Jeong, Chen Jiang, Xingyu Jiang, Jiheong Kang, Daniil Karnaushenko, Ali Khademhosseini, Dae-Hyeong Kim, Il-Doo Kim, Dmitry Kireev, Lingxuan Kong, Chengkuo Lee, Nae-Eung Lee, Pooi See Lee, Tae-Woo Lee, Fengyu Li, Jinxing Li, Cuiyuan Liang, Chwee Teck Lim, Yuanjing Lin, Darren J. Lipomi, Jia Liu, Kai Liu, Nan Liu, Ren Liu, Yuxin Liu, Yuxuan Liu, Zhiyuan Liu, Zhuangjian Liu, Xian Jun Loh, Nanshu Lu, Zhisheng Lv, Shlomo Magdassi, George G. Malliaras, Naoji Matsuhisa, Arokia Nathan, Simiao Niu, Jieming Pan, Changhyun Pang, Qibing Pei, Huisheng Peng, Dianpeng Qi, Huaying Ren, John A. Rogers, Aaron Rowe, Oliver G. Schmidt, Tsuyoshi Sekitani, Dae-Gyo Seo, Guozhen Shen, Xing Sheng, Qiongfeng Shi, Takao Someya, Yanlin Song, Eleni Stavrinidou, Meng Su, Xuemei Sun, Kuniharu Takei, Xiao-Ming Tao, Benjamin C. K. Tee, Aaron Voon-Yew Thean, Tran Quang Trung, Changjin Wan, Huiliang Wang, Joseph Wang, Ming Wang, Sihong Wang, Ting Wang, Zhong Lin Wang, Paul S. Weiss, Hanqi Wen, Sheng Xu, Tailin Xu, Hongping Yan, Xuzhou Yan, Hui Yang, Le Yang, Shuaijian Yang, Lan Yin, Cunjiang Yu, Guihua Yu, Jing Yu, Shu-Hong Yu, Xinge Yu, Evgeny Zamburg, Haixia Zhang, Xiangyu Zhang, Xiaosheng Zhang, Xueji Zhang, Yihui Zhang, Yu Zhang, Siyuan Zhao, Xuanhe Zhao, Yuanjin Zheng, Yu-Qing Zheng, Zijian Zheng, Tao Zhou, Bowen Zhu, Ming Zhu, Rong Zhu, Yangzhi Zhu, Yong Zhu, Guijin Zou, and Xiaodong Chen *
参考文献1。奥林巴斯。了解灵活内窥镜的抽样和培养的差异:为什么我们需要一种统一的方法。在线提供:https://infectionprevention.olympus.com/en-us/scientific-evid-ence/publications/nexpass-differences-smppling-smpling-ulturing。访问2023年2月2。奥林巴斯。针对内窥镜抽样和培养计划实施和管理的提示,技巧和见解。在线提供:https://infectionprevention.olympus.com/en-us/scientific-evidence/publications/sampling-and-culturing。2023年2月访问; 3。奥林巴斯。美国内窥镜研究:正确进行采样,培养和评估。在线提供:https://infectionprevention.olympus.com/en-us/scientific-evidence/publications/endoscopes-sampling-culturing。访问2023年2月
抽象的内嗅网格细胞以六边形周期性实现空间代码,这标志着动物在环境中的位置。网格图属于同一模块的细胞共享间距和方向,仅在相对二维空间相之间有所不同,这可能是由于路径积分引导的二维吸引子的一部分而导致的。但是,这种体系结构的构造和刚性的缺点,路径积分,允许与六角形模式(例如在各种实验操作下观察到的六边形模式)的偏差。在这里,我们表明一个较简单的一维吸引子足以使网格单元对齐。使用拓扑数据分析,我们表明所得的人口活动是圆环的样本,而地图的合奏保留了网络体系结构的特征。这种低维吸引子的灵活性使其能够用进料输入协议代表歧管的几何形状,而不是施加它。更普遍地,我们的结果代表了原理证明,即直觉,即吸引子的体系结构和表示歧管是具有相同维度的拓扑对象,这对整个大脑吸引者网络的研究含义。
摘要:这项全面的评论探讨了纳米杂交材料的最前沿,重点是在各种应用中的协调材料的整合,并引起了它们在柔性太阳能电池开发中的作用。以其独特的特性和多功能性为特征的基于材料的纳米杂化物,在从催化和感应到药物递送和能量存储等领域中引起了极大的关注。讨论调查了这些纳米杂化的合成方法,性质和潜在应用,强调了它们在材料科学中的多功能性。此外,该综述还研究了钙钛矿太阳能电池(PSC)中配位纳米杂交的整合,展示了它们增强下一代光伏设备的性能和稳定性的能力。叙事进一步扩展,以涵盖发光纳米杂化的合成,以实现生物成像目的以及层次的二维(2D)基于材料的纳米结构杂种用于储能和转换。探索最终在检查导电聚合物纳米结构的合成中,从而阐明了它们在药物输送系统中的潜力。最后但并非最不重要的一点是,本文讨论了柔性太阳能电池的尖端领域,强调了它们的适应性和轻巧的设计。通过对这些多样化的纳米杂化材料进行系统的检查,这项评论阐明了当前的最新,挑战和前景的状态,为材料科学,纳米技术和可再生能源领域的研究人员和从业人员提供了宝贵的见解。
柔性能源设备是下一代可穿戴电子产品的基础。柔性能源设备有望具有多种功能,例如从光到电和从电到光的转换、摩擦电能产生能量、能量存储等。这些功能可以通过太阳能电池、发光二极管 (LED)、摩擦纳米发电机 (TENG)、电池和超级电容器等有效实现。柔性能源设备可以集成到柔性、可穿戴和/或便携式平台中,从而在信息、能源、医疗、国防等领域具有广泛的应用前景。然而,与刚性能源设备相比,柔性能源设备面临着更多挑战,需要在制造技术、材料创新、新颖结构设计和深入物理理解方面取得更多突破和研究努力。
执行摘要 白银研究所的这份市场趋势报告研究了白银在印刷和柔性电子产品中日益增长的作用。根据我们的研究,2020 年全球白银年供应量的 33.9% 最终用于电子产品。每年共有 3.27 亿金衡盎司 (Moz) 的白银流入各种电子产品市场。鉴于电气化的预计增长,我们相信这一数字将随着时间的推移而继续增长,因为白银是世界上导电性最强的材料。太阳能光伏领域的扩张将促进这一增长,该领域已经消耗了全球白银供应量的 10%。根据我们的预测,到 2025 年,太阳能光伏 (solar PV) 的白银消耗量将攀升至 15% (155 Moz),到 2030 年将攀升至 19% (197 Moz)。国际可再生能源机构目前呼吁全球太阳能光伏安装量到 2050 年增长至 14,000 GW,或每年约 2,000 GW。5G 无线、汽车电子和物联网 (IoT) 的增长也是有据可查的电子产品增长机会。我们的研究表明,白银的一个关键应用是其在印刷和柔性电子产品中的使用。这个细分市场虽然目前规模相对较小,但总收入约为 590 亿美元,年增长率达到 11%。