目录 作者前言 1 1.简介 2 2.可重入(或 4π)电离室的测量原理 4 2.1 源和电离室的测量几何形状 5 2.2 电离过程和电荷收集 6 2.3 电离电流 7 2.4 电离室校准以进行活度测量 8 2.5 相对活度测量和参考源 10 2.6 Ra-226 源 12 3.电离室的构造 14 3.1 4πγ 电离室 14 3.2 特殊类型的电离室及其应用 15 3.2.1 大气压下未密封的电离室 15 3.2.2 β 粒子电离室 16 3.2.3 α粒子电离室 17 3.2.4 放射性核素校准器 17 3.2.5 电离室配件:屏蔽、样品架、样品更换器、系统控制、数据采集和数据分析 19 4.电离电流测量技术 20 4.1 静电计皮安表 21 4.2 反馈电路和电流积分器 23 4.3 通过高值电阻上的电压降进行测量 25 4.4 带补偿的汤森感应平衡 26 5.电离电流测量中的系统效应 28 5.1 电离和电荷收集引起的波动 29 5.2 电子参数的变化 30 5.3 饱和损失效应 30 5.4 响应活动的线性 31 6. 电离电流值的校正 33 6.1背景 33 6.2 衰变校正 34 6.3 样品尺寸和材料的变化 35 6.4 样品位置的变化 37 6.5 不同溶液体积源的填充校正 38 6.6 放射性核素杂质 39 6.6.1 使用半导体探测器测量的活度比进行校正 40 6.6.2 利用不同半衰期对放射性核素混合物进行校正的方法 42 6.6.3 放射性核素杂质校正的衰减方法 43
aptiva乳糜泻IgG试剂盒包含两个不同的颗粒群。一个涂有重组组织转基谷氨酰胺酶抗原的颗粒和一个涂有合成脱膜麦醇溶蛋白肽的颗粒,另一种涂有山羊抗人IgG抗体的额外的第三个颗粒作为对照验证。Aptiva系统稀释了患者样本1:23,然后将等分的稀释患者样品和试剂组合成比色杯。混合物在37°C下孵育。在洗涤周期后,将共轭抗人IgG抗体添加到颗粒中,并在37°C下孵育该混合物。在另一个洗涤周期中除去过量的共轭物,并将颗粒重新悬浮在系统流体中。系统生成多个图像以识别和计算两个唯一的分析物粒子,并确定每个粒子上的共轭量。第三个粒子涂有山羊抗人IgG抗体,是在试剂中存在的,作为对照在样品中标记低浓度IgG的对照,作为测定验证步骤。每个分析物的中位荧光强度(MFI)与与人IgG结合的共轭物的浓度成正比,这与与相应粒子区域结合的IgG抗体浓度成正比。系统使用每个区域的至少50个颗粒的MFI。颗粒的身份取决于颗粒的独特特征。Aptiva腹腔疾病IgG试剂中的每个分析物被分配为预定义的批次特定主曲线。v实质性等价信息:谓词设备名称:分析物特定的主曲线存储在试剂墨盒RFID标签上(射频标识)。基于运行校准器获得的结果(单独提供),该系统创建了特定于仪器的工作曲线。工作曲线从每个样品获得的MFI值中计算每个分析物的荧光单元(流感)。基于每个分析物的定义截止值,每个样品的测试结果均为“正”或“阴性”,每种测定的FLU的测试值,即DGP IgG和TTG IgG。
使用绝对天体测量的国际天体参考框架 在 2023 年 2 月出版的《天文学杂志》 [1] 上发表的一篇新论文中,美国天文学家 David Gordon 领导的团队海军天文台报告首次在国际天文学联合会的官方天体参考框架中精确定位了我们银河系中心的黑洞。位于我们银河系中心的是一个超大质量黑洞,被称为人马座 A* (Sgr A*),这是一个强大的射电源,自 1950 年代初以来就为人所知和研究。银河平面中的气体和尘埃在光谱的可见部分遮蔽了它,但对其附近恒星运动的红外观测表明,它的质量约为 400 万个太阳质量 [2] 。最近,事件视界望远镜 [3] 拍摄到了它的影子。但尽管对它进行了许多研究,但要准确在天空中定位它却非常困难。准确定位人马座 A* 相对于天体参考系中其他源的位置,对于定义银河系坐标系和研究银河系结构、运动学和动力学,以及在无线电、毫米波和红外线下进行研究和图像之间的配准都非常重要。之前对其位置的最佳估计是使用一种称为“差分”天体测量的无线电干涉测量技术进行的,其中它的天体坐标是相对于一个或两个附近的校准器无线电源进行估计的。然而,所使用的校准源的坐标仅精确到几十毫角秒 (mas),并且可能会随时间略有变化,导致 Sgr A* 的坐标也存在类似的不确定性。但现在,一项由美国海军天文台天文学家领导的新研究发表在 2023 年 2 月的《天文学杂志》[1] 上,首次确定了 Sgr A* 的精确位置以及它在国际天文学联合会官方天体参考框架 ICRF3 [4] 中的自行。ICRF3 是国际天体参考框架的第三个实现,是一个由甚长基线干涉测量 (VLBI) 确定的 ~4500 个紧凑类星体射电源的精确坐标组成的天体参考框架。过去几年,美国海军天文台的 David Gordon 和同事南非射电天文台的 Aletha de Witt 以及喷气推进实验室的 Christopher Jacobs 一直在使用名为 VLBI“绝对”天体测量的射电干涉测量技术对人马座 A* 进行观测,该技术通过
摘要正电子发射断层扫描(PET)是分子成像的重要方式,近年来,其在小动物(尤其是啮齿动物)中的应用显着增长。在使用PET分子成像的研究实践中,实施质量控制程序至关重要。考虑到该领域的技术进步,本研究介绍了有关小动物的PET扫描仪和用于不同巴西分子成像服务中使用的小动物的活动仪的更新。此外,目的是研究涉及小动物宠物成像的质量保证计划。值得注意的是,这项研究是基于Gontijo等人先前进行的研究。(2020年和2022年),并涵盖了从2022年开始的情况中发生的变化。将一项电子调查发送给巴西分子成像服务,该服务分别参加了2015年和2023年举行的Micro PET/SPECT/CT用户的第一次和/或第二次全国性会议。汇编了调查响应并进行描述性统计分析。这项研究揭示了该国一项新的小动物宠物分子成像服务。因此,可以确定目前有七个分子成像服务专用于巴西的小动物,总共操作八个PET扫描仪,其中一个仍处于初始测试阶段。在七个服务中,有五个位于东南地区,一个位于南部地区,一个位于东北地区。Bruker制造商Albira平台,在两种服务中找到。1。在巴西安装的大多数小动物宠物扫描仪来自伽马医学(GE)制造商Triumph®平台。此外,有一个来自Molecube制造商,β立方平台的扫描仪,另一个来自MILABS制造商U-PET/CT平台的扫描仪。结果还表明,尽管所有服务都表现出对质量保证的兴趣,并同意其重要性,但在巴西,对小动物PET扫描仪的质量保证计划的存在尚不常见。简介临床前正电子发射断层扫描(PET)在分子成像中至关重要,因为它应用于大鼠和小鼠等小动物。该技术允许同时获得静态图像和动态图像,并可以详细分析器官和组织中的功能,生化和代谢过程[1]。通过在小动物中使用临床前宠物,可以开发先进的放射性药物,并确定使用常规放射性药物治疗的新选择,使其在核医学研究中心至关重要[2]。与宠物设备一起工作,剂量校准器是每天在实验室日常工作中使用的基本工具,以监测小动物研究中用于研究的放射性病活动。它允许精确量化放射性,确保对成像研究的正确活性,这对于获得可靠且可重现的结果至关重要。