DNA损伤和修复过程如何影响核内部核的生物力学特性。这里,基于时间域的光学显微镜(TDBS)用于研究诱导的核内力学的调节。使用这种超快泵探针技术,在核内纳米结构中沿其传播跟踪相干的声音子,并通过光学分辨率测量了复杂的刚度模量和厚度。骨肉瘤细胞暴露于甲基甲磺酸甲酯(MMS),并使用针对损伤信号蛋白的免疫检测测试DNA损伤的存在。tdbs表明,由于染色质反应和重组,核内存储模量在暴露于MMS时显着降低,这有利于细胞器内的分子扩散。去除破坏剂并在缓冲溶液中孵育2小时时,固定后,核内重组会导致储存模量的反向演变,核会僵硬。当DNA双链断裂是由细胞暴露于电离辐射引起的时,也测量了相同的趋势。tdbs显微镜还揭示了声学耗散的变化,纳米级核内组织的另一种机械探针以及在暴露于MMS和恢复后的核厚度的变化。
增强的核内充分传递)描述/背景对流 - 增强输送(CED)是一种药物输送技术,用于绕过直接将治疗剂直接施用到靶向脑组织中的血液脑屏障(BBB)。大脑自然保护了BBB的有害药物,BBB是由细胞组成的屏障,可有选择地控制循环血液和神经元组织之间分子的运动。它允许对代谢功能必不可少的物质运动,但限制了大分子(蛋白质和微生物)的通过。这种阻止大分子入口的能力使药物几乎不可能直接输送到脑组织。围绕BBB的方法是将物质直接注入大脑,这是一种非常侵入性的过程。在大多数进行掌内输注或注射的过程中,递送装置在骨内通过伯尔孔立体定位地引导到其颅内靶标。对于缓慢的输注过程(在人类中,通常<0.3ml/hr),导管可能留置了几天。常规的磁共振成像(MRI)或计算机断层扫描(CT)扫描研究通常术前用于估计最佳插入轨迹。植入程序的最终细节通常是针对输送设备的设计,输液或注射的速率的特定特定的,并且必须插入必须插入的设备数量和/或必须通过的设备数量才能获得目标体积的足够治疗覆盖率。分散有两种机制:扩散和对流。输注方法,后者的形式被优化用于介入的MR成像环境中。一旦插入了套管,就可以使用微灌注泵通过套管注入含有抗肿瘤或其他药物的溶液。溶液在大脑中,就需要在整个预期的目标中分布。
1 Herantis Pharma Plc,芬兰埃斯波 2 于默奥大学临床科学系,瑞典于默奥 3 卡罗琳斯卡医学院和斯德哥尔摩医疗保健服务中心精神病学研究中心临床神经科学系,瑞典斯德哥尔摩 4 于默奥大学于默奥功能性脑成像中心,瑞典于默奥 5 卡罗琳斯卡大学医院神经内科,瑞典斯德哥尔摩 6 Renishaw Neuro Solutions Ltd,英国格洛斯特郡 7 西英格兰大学计算机科学与创意技术系,英国布里斯托 8 卡迪夫大学功能神经外科、神经科学与心理健康创新研究所,英国卡迪夫 9 赫尔辛基大学医院神经内科,芬兰赫尔辛基 10 赫尔辛基大学诊所,芬兰赫尔辛基 11 赫尔辛基大学 HiLIFE 生物技术研究所,芬兰赫尔辛基 12芬兰赫尔辛基赫尔辛基大学医院神经外科 13 瑞典隆德斯科讷大学医院神经外科 14 瑞典斯德哥尔摩卡罗林斯卡大学医院神经外科 15 瑞典斯德哥尔摩卡罗林斯卡学院临床神经科学部 16 瑞典隆德斯科讷大学医院神经内科 17 图尔库大学和图尔库大学图尔库 PET 中心医院,图尔库,芬兰
(1 国家农业和食品研究机构,西日本农业研究中心,2 名古屋大学生物农业科学研究生院)水稻和罗德斯草叶片细胞的内多倍体 Hidekazu Kobayashi 1*,Takao Oi 2