花生根结线虫 (Meloidogyne arenaria; PRKN) 是一种微小的蛔虫,会捕食许多作物的根,包括栽培花生 ( Arachis hypogaea )。如果不采取缓解措施,这些蛔虫会导致种植者产量大幅下降。2020 年,PRKN 导致佐治亚州的花生作物价值下降了 3%。为了对抗这种害虫,20 世纪 90 年代,一种来自野生近缘种 (A. cardenasii ) 的强大抗性基因被渗入花生中。基因研究表明,这种基因渗入覆盖了栽培花生 A09 染色体的 ~92%。研究还发现,基因渗入的上部产生强抗性,而下部产生中等抗性。除此之外,人们对造成抗性的基因的确切位置知之甚少。本研究的目的是对重组花生品系进行 PRKN 温室测定。希望这些试验的结果能够进一步加深对这种基因渗入的了解,从而帮助育种者培育出具有稳定和强大抗性的优良品种。
Crotalaria 属植物以其对线虫的拮抗作用而闻名。研究发现,吡咯里西啶生物碱是参与这种拮抗作用的主要代谢物。为了获得生物碱含量更高、作为生物杀线虫剂的潜力更大的提取物,我们研究了通过微繁体外培养的 Crotalaria juncea 和 Crotalaria ochroleuca 提取物的化学成分和杀线虫活性。值得注意的是,C. ochroleuca(致死浓度 95% (LC 95 ) = 157.7 μg mL -1 )和 C. juncea(LC 95 = 189.9 μg mL -1 )愈伤组织提取物对爪哇根结线虫表现出高毒性。超高效液相色谱与四极杆飞行时间高通量质谱 (UPLC-QTOF-MS E ) 分析表明,其中含有吡咯里西啶生物碱、黄酮、黄酮苷和异黄酮。这些发现凸显了与传统栽培植物相比,组织培养从 Crotalaria 物种中获取提取物的潜力,并且提供了具有杀线虫作用的更高浓度的代谢物,为可持续农业铺平了道路。
根结线虫(Meloidogyne spp。,rkn)是全球最具破坏性的内寄生虫线虫之一,通常导致作物生长和产量的降低。洞悉宿主-RKN相互作用的动力学,尤其是在不同的生物和非生物环境中,对于设计新型的RKN缓解措施可能是关键的。植物促进生长细菌(PGPB)涉及不同的植物生长增强活动,例如生物铜质化,病原体抑制和全身耐药性的诱导。我们总结了有关PGPB和非生物因素(例如土壤pH,质地,结构,水分等)作用的最新知识。在调节RKN-host相互作用中。rkn直接或间接地受到不同PGPB的影响,相互作用中的非生物因子相互作用以及对RKN感染的宿主反应。我们强调了(i)PGPB直接和间接影响RKN-宿主相互作用的三方(host-rkn-pgpb)现象; (ii)宿主对根际PGPB的选择和富集的影响; (iii)土壤微生物如何增强RKN寄生虫; (iv)宿主在RKN-PGPB相互作用中的影响,以及(v)非生物因子在调节三方相互作用中的作用。此外,我们讨论了不同的农业实践如何改变相互作用。最后,我们强调将三方互动知识纳入集成的RKN管理策略的重要性。
本季度,我们的主要研究亮点包括改进从辣椒中提取生物活性辣椒素的技术,以及将其富集在米糠油中以生产营养保健油。稻麦系统中二氧化碳的净生态系统交换被划分为总初级生产力,以与环境变量相关联。确定了玉米黄质在晚播小麦发育籽粒的光保护中的作用。在开发基于 CRISPR/Cas9 的拟南芥基因组编辑植物以提高对根结线虫的抗性方面取得了重大成就。我们庆祝了许多重要活动,例如 ICAR-IARI 成立日、世界环境日和国际瑜伽日。该研究所建立了一个区域蜂蜜检测实验室,用于检查蜂蜜的质量。NAAC 同行评审小组在此期间访问了 IARI,以对该研究所进行认证。组织了第 37 次虚拟科学咨询委员会会议,以制定明年的行动计划。向农民分发了巴斯马蒂品种的种子套件,以提高对这些品种盈利能力的认识。在“从实验室到土地”计划下,我们申请并续签了 IARI 技术的专利。通过培训计划、Kisan Goshthis、展览和演示,组织了针对推广人员和农民的土壤、水和作物管理能力建设计划。组织了 UPJA 和 ARISE 计划,以培养早期创新者和企业家。我们建立了“Pusa Agri Krishi Haat”,这是一个创新的市场平台模式,农民可以通过它向城市消费者销售农产品。IARI 的 PILA 和 PGGSU 在 Haat 内组织了一场宣传文化活动,吸引了大批观众。在此期间,在国际和国内代表访问研究所时,还展示了多项 ICAR-IARI 技术。
基于全基因组测序的链霉菌属的表征。 6(4):关注天然产品1 2 MarcelaProençaBorba1(0000-0003-4909-969X),JoãoPaulowitusk 1,DéboraMarchesan Cunha 1,Daiana deiana de Lima- 3 Mora-3 Morales 2,3 591-6514)4 5 1-农业和环境微生物学的研究生课程,基本健康科学研究所,6联邦大学里奥格兰德大学,巴西Porto Alegre,巴西Porto Alegre 7 2-生物信息知识从Porto Alegre开始阿雷格里、南里奥格兰德州、阿雷格里港、巴西 10 11 通讯作者:Marcela Proença Borba(ceh.proenca@gmail.com) 12 13 关键词 14 次生代谢产物、基因组挖掘、放线菌、生物合成基因簇、植物病原真菌。 15 16 数据摘要 17 该全基因组霰弹枪项目已存入 DDBJ/ENA/GenBank,登录号为 18 VIFW00000000。由于核苷酸序列数量巨大,在整个手稿和在线资源的补充数据中发现了数据库登录号。 20 21 摘要 22 我们对链霉菌属的整个基因组进行了测序。 6(4)是从番茄根部分离得到的,对植物病原真菌具有抗真菌活性,主要针对番茄根结线虫(Bipolaris sorokiniana)。该基因组有近 7 Mb 和 24 3,368 种假设蛋白质,这些蛋白质在 Uniprot 中进行了分析和表征,重点是 25 种生物化合物。为了表征和鉴定该分离株,进行了 MLST 分析,最终得到一种新的 ST,26 归类为 ST64。构建了表型和系统发育树来研究链霉菌属。 6(4)进化27和序列相似性,该分离株是与Streptomyces prasinus和Streptomyces viridosporus更接近的菌株。已知链霉菌属具有强大的代谢能力,并且存在隐秘基因。这 29 个基因通常以簇的形式存在,负责生产多种天然产物,其中主要是抗生素。此外,6(4)显示通过反SMASH扩增出11个生物合成基因簇,其中包括3个簇31PKS和NRPS类型。 32 33 34 简介 35
由于人口不断增长,粮食安全问题变得十分重要。作为固着生物,植物已经进化出复杂的机制来应对病原体。植物的生长发育需要营养物质的获取和运输,这些营养物质介导植物细胞信号传导并激活促生长和/或抗病原体基因的表达。营养物质,包括糖和氨基酸,是高产作物生产所必需的,但也与植物-微生物相互作用密切相关。微生物利用多种策略来适应植物,包括增强根细胞表面以吸收营养、竞争环境营养、劫持植物营养以及改变细胞营养运输和信号传导。这些有益或有害的影响会导致植物微生物群的转变。因此,分析营养物质在植物防御中的作用对于提高施肥效率至关重要。镰刀菌穗枯病 (FHB) 严重威胁小麦的质量和产量。赵等人。对抗性基因型苏麦3号和感病基因型山农20接种禾谷镰刀菌后代谢产物进行了分析,结果表明,不同品种间部分氨基酸含量发生了明显变化,外源施用脯氨酸(Pro)和丙氨酸(Ala)可增强小麦对禾谷镰刀菌的抗性,而外源施用半胱氨酸(Cys)则加重小麦的感病性,说明小麦的氨基酸代谢与抗性密切相关。尖镰孢菌是引起烟草根腐病的主要病原菌,严重影响烟草的生长。200F 的毒力测定 . oxysporum 菌株的鉴定以及表达模式的鉴定表明基因与毒力水平呈正相关,并表明 ATP 合成酶基因通过抑制烟草中糖最终输出转运蛋白 (SWEETs) 的表达水平对 F. oxysporum 的毒力很重要 [Gai et al.]。根结线虫 Meloidogyne incognita 感染显著改变了拟南芥中 SWEETs 的表达水平。组织学和遗传分析表明,M. incognita 感染诱导 AtSWEET1 在瘿中特异性表达,突变
1. Lowell, JT 等人 (2021) 四染色体规模基因组和全基因组注释可加速山核桃树育种。Nat Commun 12, 4125。DOI:10.1038/s41467-021-24328-w 2. Hufford, MB 等人 (2021) 26 种不同玉米基因组的从头组装、注释和比较分析。Science 373, 6555。DOI:10.1126/science.abg5289 3. Sun, X. 等人 (2020) 分阶段二倍体基因组组装和全基因组为苹果驯化的遗传历史提供了见解。Nat Genet 52, 1423–1432。 DOI:10.1038/s41588-020-00723-9 4. Liu, Y. 等人 (2020) 野生和栽培大豆细胞的全基因组。Cell 182, 1 162-176。DOI:10.1016/Cell 2020.05.023 5. Kingan, SB 等人 (2019) 使用 PacBio Sequel II 系统对单个野外采集的斑点灯笼蝇 (lycorma delicatula) 进行高质量基因组组装,GigaScience 8, 10, giz122。DOI:10.1093/gigascience/giz122 6. Samils, B. 等人(2021) 开发一种 PacBio 长读测序检测方法,用于高通量检测小麦根结线虫前部的杀菌剂抗性。Microbiol 12, 1610。DOI:10.3389/fmicb.2021.692845 7. Hou, Z., et al. (2021) 对中国新发现的松木线虫昆虫媒介进行比较转录组分析,揭示与宿主植物适应相关的假定基因。BMC Genomics 22, 189。DOI: 10.1186/s12864-021-07498-1 8. Bickhart, DM, et al. (2019) 通过结合长读组装和邻位连接将病毒和抗菌素耐药性基因分配给复杂微生物群落中的微生物宿主。 Genome Biol 20, 153。DOI:10.1186/s13059-019-1760-x 9. 联合国 (2019) 世界人口增长速度放缓,预计到 2050 年将达到 97 亿,并可能在 2100 年左右达到峰值,达到近 110 亿 10. Owen, JR 等人 (2021) 利用 CRISPR-Cas9 系统在牛受精卵中一步生成靶向敲入小牛。BMC Genomics 22, 118。DOI:10.1186/s12864-021-07418-3 11. Kosicki, M. 等人 (2018) 修复 CRISPR-Cas9 诱导的双链断裂会导致大量缺失和复杂的重排。自然生物技术,36,765-771。