放牧干扰可改变植物根际微生物群落结构,从而改变反馈机制,促进植物生长或诱导植物防御。然而,人们对这种变化在不同放牧压力下如何发生和变化,以及根部代谢物在改变根际微生物群落组成中的作用知之甚少。本研究研究了不同放牧压力对微生物群落组成的影响,并利用代谢组学方法探索了不同放牧压力改变根际微生物组的机制。放牧改变了微生物群落的组成、功能和共表达网络。在轻度放牧(LG)下,一些腐生真菌,如香菇属、Ramichloridium 属、Ascobolus 属。和 Hyphoderma sp. 显著富集,而在重度放牧 (HG) 下,潜在有益的根际细菌,如 Stenotrophomonas sp.、Microbacterium sp. 和 Lysobacter sp. 显著富集。有益的菌根真菌 Schizothecium sp. 在 LG 和 HG 中均显著富集。此外,所有富集的有益微生物都与根系代谢物呈正相关,包括氨基酸 (AA)、短链有机酸 (SCOA) 和生物碱。这表明这些显著富集的根际微生物变化可能是由这些差异性根系代谢物引起的。在放牧压力下,推测根系代谢物,尤其是氨基酸如L-组氨酸,可能调控特定的腐生真菌参与物质转化和能量循环,促进植物生长。此外,为了缓解高放牧压力,提高植物的防御能力,推测根系在放牧干扰下会主动调节这些根系代谢物如氨基酸、中链氨基酸和生物碱的合成,然后分泌它们来促进一些特定的促进植物生长的根际细菌和真菌的生长。总之,禾本科植物可以通过改变根系代谢物的组成来调控有益微生物,在典型的草原生态系统中,不同的放牧压力下,其响应策略也不同。
微生物群移植是管理植物性疾病的强大工具。这项研究研究了微生物群移植对棉叶毛皮疾病(CLCUD)抗性的影响,该物种长度良好,但对生物胁迫的敏感性很高。分析了抗clcud抗性物种gossypium arboreum的v3-v4 16S rRNA基因扩增子,来自根际和腓骨层的微生物馏分以及易感棉花品种。已经确定了与疾病抗性相关的独特细菌分类群。进行了种间和种内微生物群移植,然后进行CLCUD发病率分析。可以看出,从G. arboreum fdh228中移植的根际微生物群体显着抑制了G. hirsutum品种中的Clcud,表现优于外源水杨酸的施用。虽然浮游移植也降低了疾病的发生,但它们的效率不如根际移植。差异表达分析DESEQ2用于识别与Clcud抑制相关的关键细菌属,包括pseudoxanthomonas和stenotrophomonas在G. arboreum fdh228的根际中。功能途径分析揭示了耐受物种中应力反应和代谢的上调。转录组学揭示了与蛋白质磷酸化和种间根际微生物群移植中有关的基因上调。这项研究强调了微生物群移植是一种可持续的方法,用于控制CLCUD以及有助于Clcud耐药性的特定微生物和遗传机制。
在农业中使用和管理生物量化剂的总结,主要问题之一是对农业生态系统和农作物的根际中存在的物种的无知,因为它们可能有效使用。 div>从生态学的角度来看,重要的是要认识细菌群落的成员,这些成员有利于其作为接种剂的应用,并促进对农作物的积极生物学作用。 div>这项研究的开发是为了评估Azospirillum SP在番茄种植中的生长,发展和表现方面的农业生物学有效性。 div>为此,从农作物反应中评估了作物的根际,从农作物的反应中评估了主要的微生物类型。 div>结果表明,在所研究的条件下,假单胞菌,偶氮螺旋杆,pegotobacter,bacillus和链霉菌类型是番茄根际的微生物群落的一部分,并且氮杂螺母是主要类型。 div>对这种酮的人工接种对幼苗的生长以及植物的营养状况产生了积极影响,而农业性能在证人植物方面超过11%。 div>在接种植物的根际中获得了高度的水平。 div>
电子邮件:biswanathgupta1988@gmail.com 摘要:遥感技术利用从地球反射和衍射到太空的电磁波来创建复杂的数据,这些数据对自然资源管理和土地利用非常有用。最初,只有少数国家能够获得遥感数据,但随着外层空间技术和研究的发展,越来越多的国家获得了探索遥感数据使用的能力。同样,私人遥感数据用于商业目的的可用性也在增加。在这个关键时刻,各国越来越多地转向知识产权(“IP”)权利,特别是版权,以保护和垄断遥感数据。现有的遥感数据知识产权法在国内和国际法领域差异很大。外层空间的国际法没有充分解决影响遥感数据版权保护的问题。本文阐述了围绕遥感数据保护制度的困境和争论,最后提出了解决这些问题的可能解决方案。公约和期刊文章用于发展本文的论点。关键词:外层空间、遥感、版权、数据、国际法、知识产权
- N为31.94和29.58%,可用的磷(AP 53.21和27.19%),RR和ZZ中可用的钾(AK 42.43和11.92%)的可用钾(AK 42.43和11.92%)的含量超过RZ和ZR。用相同品种(RR,ZZ)返回的稻草可显着提高根际微生物群落的丰富性和多样性。品种Z9(处理Z)的微生物多样性大于品种ROC22(处理R)的微生物多样性。在根际中,有益微生物的相对丰度Gemmatimonadaceae,Trechispora,链霉菌,Chaetomium等在稻草返回后增加。甘蔗稻草增强了假单胞菌和曲霉的活性,从而提高了甘蔗的产量。Z9成熟时的Z9根际微生物群落的丰富性和多样性增加。在ROC22中,细菌多样性增加,真菌多样性减少。这些发现共同表明,Z9稻草返回的影响比ROC22对根际微生物的土壤功能和甘蔗产生的活性更有益。
摘要根际是植物根直接影响的土壤区域。根际中的微生物群落包括真菌,原生和细菌:所有在植物健康中都起着作用。有益的细菌中西氏细菌在氮含有的豆科植物上感染了根毛。感染会导致根结节的形成,其中Meliloti将大气氮转化为氨(一种可生物利用形式)。在土壤中,经常在生物膜中发现梅洛蒂(S. meliloti),并沿着根部缓慢行进,沿着未感染的根尖生长的根尖端发出根毛。土壤原生生物是根际系统的重要组成部分,能够沿着根和水膜迅速行进,后者捕食土壤细菌,并且已知未消除的吞噬体已知。我们表明,土壤原生物colpoda sp。可以将S. meliloti沿Medicago trunca-tula根传递。使用模型的土壤缩影,我们直接观察到沿截骨根部的流体标记为Meliloti链球菌,并随着时间的推移跟踪了荧光信号的位移。共同接种两周后,当Colpoda sp。也存在与含有细菌但没有生物的治疗方法相比。直接计数还表明,生存细菌需要生存者才能达到我们缩影的更深层。促进细菌运输可能是土壤生物促进植物健康的重要机制。
豆科植物富含蛋白质,是人类和动物的良好食物,具有很高的营养价值。植物生长促进菌(PGPR)是栖息在植物根际土壤中的微生物,有助于保持作物的健康状况、促进其生长并防止疾病的入侵。豆科植物根部产生的根系分泌物可以诱使微生物迁移到根际区域以进行其潜在活动,从而揭示了豆科植物与PGPR(根瘤菌)的共生关系。为了更好地了解豆科植物根际的PGPR,将使用各种基因组序列进行基因组分析,以观察土壤中的微生物群落及其功能。本综述讨论了植物促生根际细菌 (PGPR) 的比较基因组机制,揭示了植物生长促进、磷酸盐溶解、激素产生以及植物发育所需的植物促生基因等活动。本综述揭示了基因组学在改进基因分型数据收集方面的进展。此外,本综述还揭示了植物育种和其他涉及转录组学的分析在生物经济促进中的重要性。这项技术创新提高了作物在不利环境条件下的产量和营养需求。
气候因子和根际微生物群的变化导致植物在不利的环境条件下调整其代谢策略以生存。植物代谢产物的变化可以介导农作物的生长和发育,并与植物根际的根际微生物相互作用。了解环境因素,根际菌群和烟草代谢产物之间的相互作用,是通过在中国尤恩南的四个典型代表性烟草种植地点使用综合的元基因组和代谢组策略进行了一项研究。结果表明,农艺和生化特征受到温度,降水(PREP),土壤pH和高度的显着影响。相关分析显示,温度与叶片的长度,宽度和面积有显着的正相关性,而PREP与植物高度和有效的叶子数相关。此外,烘焙叶的总糖和还原的糖含量明显更高,而在现场烟叶中,总氮和总生物碱水平较低,而Prep较低。与其他三个地点相比,在Chuxiong(CX)的不同丰富的代谢物(DMS)中,总共770个代谢产物被检测到,其中二次代谢物在两种叶子和根中都更丰富。共有8479种,属于2,094个属,有420个单独的垃圾箱(包括13个高质量的垃圾箱),它们被检测到851,209个CDSS。微生物的门水平,例如euryarchaeota,粘菌球和脱氧核糖核,在CX部位显着富集,而假胞植物在高温位点富集了良好的prep。相关分析表明,低prep位点样品中的代谢化合物与二氨基丁酸,nissabacter,nissabacter,alloactinosynnema和catellatospora和catellatospora和catellatospora呈正相关,并与niculibibacterium,Noviherbasterium,Noviherbasuspirillim和Limnobrim s himnicibrim and Novibasterium s himnicibrim seriaterts re招募。根际诱导的二氨基丁基菌,尼萨拉克菌,同骨促和catellatospora
摘要。一般来说,煤矿开采都是公开进行的,使用重型设备在表土区取土和搬运土壤,直到可以进行煤矿开采。因此,由于存在物理、化学和生物土壤损害,营养水平较低。生物修复是利用土壤微生物改善前煤矿土地的替代方法之一,这些微生物对土壤植物激素水平有影响,例如产生生长素的根际细菌。本研究旨在分离和表征前煤矿土壤上生长的豆科植物根系的根际细菌,并定性和定量确定其产生 IAA 激素的能力。表征包括革兰氏染色特性、菌落形态、分离物排列和细胞形状。然后,分别使用 Salkowski 方法和分光光度法测试细菌定性和定量产生 IAA 的能力。结果表明,在原煤矿区土壤上生长的豆科植物根际细菌分离株中有 11 种能够产生 IAA 激素,平均浓度为 15.949 ppm(2IA4);10.762 ppm(4IIE3);9.700 ppm(ID3);9.422 ppm(3IB4);7.970 ppm(2IA3);7.847 ppm(6IIB3);7.268 ppm(8IIIB4);6.804 ppm(IIID5);6.459 ppm(IE5);5.379 ppm(7IIIB3);和 5.086 ppm(5IB3)。浓度最高的根际细菌分离株有可能被选为原煤矿区土壤上豆科植物的生长促进剂,以提高豆科作物的生产力。