水中的trip含量的抽象建模是一种有意义的方法,可以评估气候模型中水周期的表示,因为它可以追溯水周期内和储层之间的通量(平流层,对流层和海洋)。在这项研究中,我们介绍了在大气通用循环模型(AGCM)MIROC5 -ISO中的自然trimatium及其在1979 - 2018年期间的模拟。由于最近发表的trium生产计算,我们能够首次研究与11年太阳能周期对降水中Tritium的自然产量产生的影响。miroc5 -iso正确模拟了对降水中tri的大陆,纬度和高度影响。与平流层 - 对流层交换相关的季节性trip含量峰值也可以准确地模拟时间安排,即使MiroC5 -ISO低估了变化的幅度。div> div> div> div> div> div> div> div> div> div> div> div> div> div> div>与在南极洲的沃斯托克(Vostok)的观察结果一致,例如,我们的模拟表明,内部气候变异性在极性沉淀中在tritium中起重要作用。由于其对南极涡流的影响,南环模式增强了生产成分对南极降水的trim的影响。在格陵兰岛,由于北大西洋振荡对湿度条件的影响,在降水中检测到降水中11年太阳周期的东 - 西对比。
北极海冰的减少导致人类在北极的活动增加,并增加了对该地区未来的兴趣和担忧。美国,根据阿拉斯加,美国是一个北极国家,在该地区具有重大利益。其他七个北极国家是俄罗斯,加拿大,冰岛,丹麦(根据格陵兰岛),挪威,瑞典和芬兰。1984年的《北极研究与政策法》(ARPA)(P.L.1984年7月31日的98-373)“为涉及北极国家研究需求和目标的全面国家政策提供了全面的国家政策。”国家科学基金会(NSF)是实施北极研究政策的主要联邦机构。 北极理事会成立于1996年,是解决与北极有关的问题的主要国际论坛。 《联合国海洋法公约》(UNCLOS)在包括北极海洋在内的世界海洋中提出了全面的法律和秩序制度。 美国不是UNCLOS的政党。1984年7月31日的98-373)“为涉及北极国家研究需求和目标的全面国家政策提供了全面的国家政策。”国家科学基金会(NSF)是实施北极研究政策的主要联邦机构。北极理事会成立于1996年,是解决与北极有关的问题的主要国际论坛。《联合国海洋法公约》(UNCLOS)在包括北极海洋在内的世界海洋中提出了全面的法律和秩序制度。美国不是UNCLOS的政党。
新组织的车站散布在北极区域:两个俄罗斯车站 - 在Malye Karmakuly(位于Novaya Zemlya群岛)和Sagastyr岛(位于Lena河的三角洲);美国车站 - 在巴罗角(阿拉斯加)和康格堡(加拿大富兰克林湾);德国车站 - 金田峡湾(BAFFINLAND);以及威尔切克·塔尔(Jan Mayen岛)的奥地利 - 匈牙利车站。荷兰探险队在迪克森岛和卡拉海的船只上工作;芬兰探险队 - 在芬兰(芬兰); Bossecop(挪威)的挪威探险队;丹麦探险队 - 在格陵兰岛的戈德塔布(Godthaab);和英国探险 - 在加拿大雷堡(Troit-Skaya,1955年)。IPY是将不同的地理探险转变为复杂的科学研究的第一次尝试。因此,获得了有关冰,天气条件,地磁现象和极地灯的独特数据,然后构成了地理物理学家进一步合作长期活动的基础。第二个国际极性年是在50年后组织的。在低太阳活动时期,它持续了1932年8月至1933年9月。这项研究的结果与第一个IPY的主动太阳时期的数据相比,它们具有很大的兴趣。第二个IPY将来自44个国家 /地区的科学家聚集在一起。第二个IPY的计划是由国际年度委员会制定的,由10
摘要。鉴于冰盖的响应时间较长,对格陵兰冰盖的模拟通常超出了可用的输入气候数据,因此无法可靠地模拟地表质量平衡背后的快速过程。众所周知,强反馈过程会使质量平衡对年际和年内变化敏感。即使使用气候模型进行模拟,也并不总能覆盖整个感兴趣的时期,这促使我们使用相对粗糙的气候重建或时间插值方法来弥补这些差距。然而,这两种方法通常只提供气候平均值的信息,而不提供变化信息。我们使用 BErgen 雪模拟器研究这种简化如何影响地表质量平衡。该模型使用相同的大气气候学但不同的合成变化运行了长达 500 年。虽然年际变化对格陵兰冰盖表面质量平衡的影响不到 5%,但如果使用每日气候学而忽略年内变化,则会导致质量平衡发生 40% 的变化。将总体影响分解为不同输入变量的贡献,最大的贡献者是降水,其次是温度。使用每日气候学,每天少量的降雪会高估反照率,从而高估表面质量平衡 (SMB)。我们提出了一种修正方法,重新捕捉间歇性降水的影响,将 SMB 的高估降低到 15%-25%。我们得出结论,格陵兰岛表面质量和能量平衡的模拟应该在瞬态气候下进行,特别是对于使用瞬态数据校准的模型。
抽象理解冰川冰中杂质在定量水平上的显微镜变异性对于评估古气候信号的保存至关重要,并能够研究宏观变形和介电冰性能。通过激光燃烧感应耦合 - 质量 - 质量 - 频谱法(LA -ICP -MS)进行两维成像可以为冰中杂质的定位提供关键的见解。到目前为止,这些发现主要是定性的,并且获得定量见解仍然具有挑战性。LA -ICP -MS高分辨率成像的最新进展现在可以单独解决冰晶粒和晶界。这些决议需要新的足够的量化策略,因此,具有基质匹配标准的准确校准。在这里,我们提出了三种不同的定量方法,它们在几十微米的规模上提供了高水平的同质性,并专用于冰核的成像应用。提出的方法之一具有第二次应用,提供了实验室实验,以研究谷物生长的杂质移动,并具有研究冰与恋相互作用的重要潜力。标准,以实现选定冰芯样品中杂质的绝对定量。校准的LA -ICP -MS地图表明所有样品中杂质的类似空间分布,而杂质水平却差异很大:在冰川时期和格陵兰岛检测到较高的浓度,在南方中部的冰川间周期和样品中检测到较低的水平。这些结果与互补融化分析范围一致。与CM尺度熔化技术的进一步比较需要对跨空间尺度进行更复杂的理解,而校准的LA -ICP -MS地图现在可以定量地贡献。
冰盖对边界条件的变化做出动态响应,例如气候变化、基底热条件和底层基岩的均衡调整。这些导致冰盖向新的平衡演变。涉及长达 10 4 年的长响应时间尺度,由冰厚度与年质量周转率的比率、床的物理和热过程以及影响冰粘度和地幔粘度的过程决定。反馈过程可能会放大或减轻冰盖对强迫的调整,或者内部不稳定性可能会因动态流动状态的变化而导致冰量快速变化,从而使冰盖的响应变得更加复杂。开发冰流数值模型的主要动机是为了更好地了解冰盖和冰川的空间和时间行为,并预测它们对外部强迫的响应。冰盖动力学建模提供了一个强大的框架,可以定量研究过去和未来环境中冰盖与气候系统之间的复杂相互作用。冰流模型通常基于描述冰川流动的基本物理定律和假设。冰盖模型类别的顶端是所谓的三维热机械模型,它们能够描述真实冰盖随时间变化的流动和形状。这些模型类似于气候科学其他分支中开发的一般环流模型。它们的发展紧随计算机能力、冰芯和沉积物钻探、遥感和地球物理年代测定技术等领域的技术进步,这些技术进步既提供了所需的计算手段,也提供了输入和验证这些模型所需的数据。此类模型已应用于格陵兰岛和南极洲现有的冰盖,以及第四纪冰河时期覆盖北半球大陆的冰盖。典型的研究集中在第三纪冰盖形成的机制和阈值(Huybrechts,1994a;DeConto & Pollard,2003)、冰期-间冰期旋回期间冰盖的形式和范围(Marshall 等人,2000;Ritz 等人,
确定积雪深度的空间分布不仅对于与饮用水供应或水力发电相关的民用目的至关重要,而且对于雪、水文和环境研究中的多种应用也至关重要。然而,积雪深度在空间和时间上都变化很大。因此,传统和最先进的积雪监测方法并不总是能够捕捉到如此高的空间变化,除非采用非常昂贵的解决方案。在这项研究中,我们提出了一种新方法,旨在通过利用地球科学研究环境中的两种低成本和新兴技术来提出解决问题的方法;运动结构 (SfM) 数字摄影测量和无人机 (UAV)。这些技术相结合的优点在于,它们可以以较低的运行成本和较少的工作量提供大面积的精确高分辨率数字高程模型 (DEM)。所提出的方法将利用这一资产,在地理参考雪面(雪 DEM)与其相应的底层地形(地形 DEM)之间进行减法,从而提供雪深分布图。为了在小规模上测试所提出方法的可行性和效率,在上述背景下调查了六个不同的积雪区域。这些区域的面积从 900 到 51,000 平方米不等,其中两个位于斯瓦尔巴群岛朗伊尔城附近,四个位于西格陵兰岛安登峡湾附近。调查在雪面类型、底层地形复杂性、亮度条件和所用设备方面有所不同,以评估该方法的适用范围。结果呈现为六张雪深分布图,并通过比较估计的雪深和一组质量控制点上探测到的雪深来验证。根据区域不同,探测到的雪深与估计的雪深之间的平均差异从最佳情况的 0.01 米到最坏情况的 0.19 米不等,同时空间分辨率范围从 0.06 到 0.1 米。彻底调查了每种情况的误差源,并评估了通过使用雪面和相应的底层地形中可见的公共地面控制点对 DEM 进行地理配准可以进一步减轻误差。在进行的测试中,该方法没有受到该区域的任何特定表面特征或任何调查条件的特别限制。尽管是在小规模区域进行测试,但通过考虑这些初步结果,该方法有可能成为一种简化程序,允许重复绘制雪动态图,同时降低运行成本,并且不会放弃获得高精度和高分辨率。
2024年带来了一些变化。这个前言与以前的版本不同,通过着眼于可持续性和能力建设。我想首先承认卡拉利特·努纳特(Kalaallit Nunaat)(格陵兰岛)有一位新的首席医疗官Paneeraq Noahsen。在努克(Nuuk)出生和长大,她是历史上第一位绿地女性医学官,并且在格陵兰医疗保健系统中拥有丰富的经验。此外,她是我们学院的博士生。我想借此机会表达我的骄傲并祝贺她。我参加了汉斯·埃格德(Hans Egede)家的招待会,在那里发表了几次强有力的演讲。引起我深刻共鸣的一句话是Naalakkersuisut Siulittaassuat(总理),MutéBourupEgge引用了前首席医疗官Henrik L. Hansen的话:“为了上帝的缘故,您必须教育自己的!”。这句话与我引起了共鸣,因为我完全同意 - 我们必须教育更多自己的护士,医生和医疗保健专业人员。这将创造更大的稳定性并确保社会的可持续发展。我长期以来一直专注于能力建设,这需要清晰而战略性的计划。在2024年秋天,我优先考虑加强与格陵兰医疗体系的合作,因为我相信我们的研究所和医疗保健部门应该紧密合作以改善和加强教育。我们已成功与南丹麦大学合作,于2025年秋季启动专业硕士课程。跟随他们的旅程将是令人兴奋的。我坚信该计划将有助于医疗保健系统的发展。专业硕士课程是一项为期四年的教育,学生在实践中学习。该计划的目标是通过基于证据的实践提高护理质量,最终使患者在日常护理中受益。我们需要在医疗保健系统中提高技能护士和其他医疗保健专业人员。这对于满足增加学生入学率和更高完成率的战略目标至关重要。近年来,我们还投入了能源和资源来扩展我们的研究所,这一发展既健康又导致了许多积极的举措。在2025年2月,第一批学生开始了我们的新单身计划-Ilsa Biology,我想强调一些鼓舞人心的元素。Sila Biology计划最具启发性的方面之一是,第一群学生将获得一个独特的机会来帮助塑造教育文化。例如,他们将参加一个鼓手研讨会,每个学生将在那里制作自己的Qilaat。他们还将通过歌曲和舞蹈了解因纽特知识,技术和可持续性原则。本周的目的是培养一种社区意识,并确保学生在深入了解和尊重我们的社会和祖先所拥有的知识的情况下开始接受教育。此外,还将为他们提供一项元认知培训计划,旨在支持心理健康和保持专注的能力。我希望在那里见到你。在研讨会之后,学生将开始他们的第一门课程Tikinneq,该课程将他们介绍给我们的大学,材料和资源,学习技术,包括急救认证。我们旨在在我们的研究所(包括护理计划中)围绕这种教育方法创造协同作用。我们中的几个人参加了2024年哈利法克斯举行的国际极度卫生大会(ICCH18),在那里,与其他因纽特人和个人也强调教育和研究中的文化的人非常鼓舞人心。这些优先事项将塑造我们研究所的未来发展。我们是一所小型大学中的小型研究所,但我们一直在不断发展。教育和研究紧密相关并相互丰富。在我们的研究所,我们旨在将更多的研究整合到教学上,以确保学生保持最新状态,并为未来的挑战做好准备,同时为研究开发做出贡献。我希望每个人都隶属于该中心,而我们的研究所将有助于推动这一令人兴奋的发展。在研究和医疗保健领域都非常需要团结。我衷心希望我们所有人都会为未来几年等待我们的激动人心的进步做出贡献。我期待参加10月的Nunamed 2025开幕,主题将是“教育和未来”。