1. 简介 1.1. 材料力学在设计中的作用 1.2. 材料行为和失效模式 2. 材料的弹性和非弹性行为 2.1. 单轴载荷下的线性弹性行为 2.2. 非线性和非弹性行为 2.3. 屈服准则 2.4. 断裂机制 3. 生物系统中材料的力学行为 3.1. 钢材 3.2. 混凝土 3.3. 木材 3.4. 骨骼 3.5. 柔性材料 3.6. 其他材料 4. 梁的弯曲分析 4.1. 梁的适用性 4.2. 梁挠度方程 4.3. 挠度分析方法 5. 柱的稳定性分析 5.1. 结构的稳定性 5.2. 欧拉公式 5.3. 侧向支撑 5.4. 柱设计 6. 结构分析中的能量方法简介(可选) 6.1. 应变能 6.2功能法 6.3. 卡斯蒂利亚诺定理
深中通道是目前世界上挑战最大的海上综合建设工程,具有世界最高通航净空的海上桥梁、世界最大跨度的海上钢箱梁悬索桥、世界最高抗风等级的钢箱梁悬索桥、世界最大海锚、世界首座双线八车道钢壳混凝土沉管隧道、世界最长、最宽的水下钢壳混凝土沉管隧道等特点。
摘要——随着海洋可再生能源产业的不断扩大,制造领域的创新也必须随之增长,以降低成本并确保新技术的经济可行性。增材制造,通常称为 3D 打印,为海洋流体动力技术的快速成型提供了一种替代方案,特别是支持美国能源部水力技术办公室的“推动蓝色经济”计划。本研究探讨了增材制造在海洋流体动力结构开发中的应用,重点是材料和打印方法的选择、设计和轴流潮汐涡轮叶片的 3D 打印翼梁的分析。由于叶片将承受的负载和恶劣的海洋环境,耐腐蚀金属被认为是理想的选择。激光金属沉积方法被认为是考虑规模的最有效和可扩展的方法。设计的翼梁使其几何形状适应叶片——这是增材制造独有的特点——并旨在作为叶片的主要结构部件。有限元模型用于研究负载条件下的应力和变形。该翼梁采用 316L 不锈钢通过直接能量沉积制造而成,并对缺陷进行了评估和记录。未来的努力将包括对翼梁进行机械测试。这项研究为使用增材制造开发海洋流体动力结构建立了基准流程,为未来的优化和技术经济分析铺平了道路。
目录 第 1 章 - 一般原则 第 1 节 - 应用 第 2 节 - 符合性验证 第 3 节 - 功能要求 第 4 节 - 符号和定义 第 2 章 - 总体布置设计 第 1 节 - 分舱布置 第 2 节 - 舱室布置 第 3 节 - 通道布置 第 3 章 - 结构设计原则 第 1 节 - 材料 第 2 节 - 净尺寸方法 第 3 节 - 腐蚀附加 第 4 节 - 极限状态 第 5 节 - 腐蚀防护 第 6 节 - 结构布置原则 第 4 章 - 设计载荷 第 1 节 - 总则 第 2 节 - 船舶运动和加速度 第 3 节 - 船体梁载荷 第 4 节 - 载荷工况 第 5 节 - 外部压力 第 6 节 - 内部压力和力 第 7 节 - 载荷条件 第 8 节 - 载荷手册和载荷仪器 附录 1 - 货舱质量曲线 附录 2 - 直接强度分析的标准载荷条件 附录 3 - 疲劳强度评估的标准载荷条件 第 5 章 - 船体梁强度 第 1 节 -屈服校核 第 2 节 - 极限强度校核 附录 1 - 船体梁极限强度
深中通道是目前世界上挑战最大的海上综合建设工程,具有世界最高通航净空的海上桥梁、世界最大跨度的海上钢箱梁悬索桥、世界最高抗风等级的钢箱梁悬索桥、世界最大海锚、世界首座双线八车道钢壳混凝土沉管隧道、世界最长、最宽的水下钢壳混凝土沉管隧道等特点。
Although the application of fiber-reinforced concrete (FRC) beams turns back to a few decades ago (Adhikary & Mutsuyoshi, 2006 ; Masuelli, 2013 ; Soltanzadeh et al., 2015 ), significant efforts also have been made to increase the strength and ductility of concrete in construction and building structures since sustainable infrastructure is cru- cial for economic development (Aldwaik &阿德利,2016年)。与其他纤维增强的复合结构(çelik&König,2022; Rafiei&Adeli,2017b; Shafighfard等,2021)一样,最近已证明FRC结构是拥有比正常混凝土更具特殊耐药性和强度的能力。能够预测钢纤维 - 增强混凝土(SFRC)束的结构行为是研究人员在攻击其性能时面临的众多挑战之一(Rafiei等,2017; Singh,2016; Venkateshwaran&Tan,2018)。在众多的弯曲参数中(Gribniak等,2012; Gribniak&Sokolov,2023),延展性比引起了研究人员的注意,因为它的能力反映了结构元素对弯曲载荷的反应。另一个重要的弯曲度量是弯曲载荷能力(峰值负载),该指标已通过数值模拟,实验研究和机器学习(ML)基于基于的预测技术进行了研究。一些研究人员已经对SFRC梁进行了数值和/或分析研究,以降低与实验研究相关的劳动和/或材料成本(Jeong&Jo,2021;Júnior&Parvin,2022)。tan等。Yang等。 (2020)Yang等。(2020)纵向钢筋比率和残留拉伸强度是SFRC梁柔性性能的参数研究中考虑的典型变量。使用纤维来增强拉伸强度并不比连续加固在改善混凝土束的力矩容量方面更有效,但是与普通的RC梁相比,纤维增强型会增加僵硬和强度(Mobasher等人,2015年)。(2022)进行了SFRC材料特性对弯曲性能的影响的参数分析,发现弯曲延展性受到RC梁中高体积分数的影响。对具有不同纤维纵横比,方向和梁尺寸的SFRC梁的三维(3D)模型表明,由于弯曲增强的峰值载荷增加了较高的分布纤维,因此在拉伸应力方向上定向纤维。此外,具有较低纤维增强比的较小梁显示出较高的峰值载荷(Al-Ahmed等,2022)。实验研究通常被认为是数值工作(Pereira等,2020)的组成部分,以验证它们提供的结果。
压电致动器由带电石英板构成,当施加电压时石英板会膨胀。这些致动器以其快速响应时间、高输出力和实现亚纳米定位分辨率的能力而闻名。由于这些特性,压电致动器经常用于微夹钳,如许多研究报告所述。在设计包含压电致动器的机构时,必须对致动器施加预应力,因为产生的位移极小。此外,位移放大通常是必要的,以便在夹钳尖端获得所需的力。一种常见的放大技术是桥式放大器,它通过偏转平行梁将水平运动转换为垂直运动。使用桥式放大器的微夹钳的一个例子是将放大器的输出连接到梁屈曲机构,通过允许梁在压力下屈曲而不是断裂,确保夹钳尖端的力一致。然而,这种设计的恒定力应用仅限于小范围的位移,操纵的最小物体尺寸为 200 µm。