摘要——物联网 (IoT) 是数字化转型新时代的主要工具之一。通过物联网,我们期待探索数字世界中的新技术以及它们如何帮助改善现实世界。在这项工作中,我们概述了部署用于监控任何室内空间(特别是农业空间)的监控系统的方法。整个过程从运动传感器使用机器学习技术进行运动检测后开始。这需要在电子链中实现覆盖和响应处理算法。该系统的电子部分涉及微控制器、传感器及其之间的通信。已经创建了一个移动应用程序,以允许主管部门接收警报以进行实时干预,目的是防止在畜群通道附近屠宰的农作物遭到破坏。我们介绍了监控系统的示意图及其操作以及电源模块描述。已经设计了原型并进行了性能评估,以表明该系统大多数时间都是响应的。
科学与工程研究杂志。2022,2(3),52-65。 https://doi.org/10.53898/josse2022234 https://engiscience.com/index.php/josse
因其成本低、扫描时间短、适应症广泛等优势,已成为一种诊断工具 [1]。在日常实践中,胸部 X 光片通常用于健康检查、术前风险评估、住院前的常规筛查以及对有症状的心肺疾病患者的评估 [2]。由于胸部 X 光片通常不包含明显的异常,但其分析需要仔细检查复杂的结构,因此读者忽视异常的风险很大 [1,3]。大量检查带来的繁重工作量给放射科医生带来了进一步的困难。因此,基于人工智能的计算机辅助诊断 (AI-CAD) 可以作为第二意见,提高放射科医生诊断的效率和准确性 [1,4,5]。此外,人工智能还可以在日常实践中帮助转诊临床医生进行胸部 X 光检查 [6,7]。当临床医生观察胸部X光片时,可能无法获得官方放射学报告。在这种情况下,使用X光片做出的医疗决定是基于转诊临床医生而不是放射科医生的解读,这种情况可能尤其发生在门诊或急诊室。根据经验水平,转诊临床医生有时可能对自己对胸部X光片的解释缺乏信心,并且可能无意中没有咨询肺病学或胸外科专家[8]。此外,他们可能会因为担心忽视患者的问题而要求进行不必要的CT扫描或后续影像检查。目前,对AI的期望越来越高,转诊临床医生意识到AI可能能够支持他们的决策过程[9,10]。许多
摘要 车载入侵检测系统 (IV-IDS) 是用于检测针对电动或自动驾驶汽车的网络攻击的保护机制之一,其中基于异常的 IDS 解决方案在检测攻击尤其是零日攻击方面具有更好的潜力。通常,由于难以区分正常数据和攻击数据,IV-IDS 会产生误报(错误地将正常数据检测为攻击)。它可能导致不良情况,例如系统松懈加剧,或在生成警报后事件处理中的不确定性。借助复杂的人工智能 (AI) 模型,IDS 提高了检测到攻击的机会。然而,使用这种模型是以降低可解释性为代价的,可解释性这一特性在确定其他各种有价值的需求时被认为很重要,例如模型的信任、因果关系和稳健性。由于基于人工智能的复杂 IV-IDS 缺乏可解释性,人类很难信任这样的系统,更不用说知道当 IDS 标记攻击时应该采取什么行动。通过使用可解释人工智能 (XAI) 领域的工具,本论文旨在探索可以根据模型预测产生什么样的解释,以进一步提高基于人工智能的 IV-IDS 的可信度。通过比较调查,在自定义、伪全局、基于可视化的解释(“VisExp”)和基于规则的解释上评估了与可信度和可解释性相关的方面。结果表明,VisExp 提高了可信度,并增强了基于人工智能的 IV-IDS 的可解释性。关键词:入侵检测系统、车载入侵检测系统、机器学习、深度学习、可解释人工智能、可信度。
摘要 — 在过去的几年中,域名服务 (DNS) 一直是黑客的主要目标,因为它使他们能够首先进入网络并获取数据以进行窃取。尽管 DNS over HTTPS (DoH) 协议具有隐私和安全等互联网用户所希望的特性,但它也导致了一个问题,即网络管理员无法检测到恶意软件和恶意工具生成的可疑网络流量。为了支持他们维护安全网络的努力,在本文中,我们使用一种新颖的机器学习框架实现了可解释的 AI 解决方案。我们使用公开的 CIRA-CIC-DoHBrw-2020 数据集来开发一种准确的解决方案来检测和分类 DNS over HTTPS 攻击。我们提出的平衡和堆叠随机森林在手头的分类任务中实现了非常高的精度 (99.91%)、召回率 (99.92%) 和 F1 分数 (99.91%)。使用可解释的 AI 方法,我们还强调了底层特征贡献,以期从模型中提供透明且可解释的结果。
每天发生的重大道路交通事故数量在增加,其中大多数归咎于驾驶员的过错。根据美国的一项调查,据报道,2016 年发生了超过 30 起大型道路交通事故,造成超过 3 人严重受伤。最有趣的问题是,在这项调查中,有 70% 的事故是由于疲劳驾驶造成的。该项目的目标是建立一个困倦检测系统,该系统可以检测到一个人的眼睛闭了几秒钟或一个人打哈欠。当检测到困倦时,该系统会提醒驾驶员。任何人际关系中都存在情绪。面部表情、对话、手势甚至态度都可以用来描绘这些感受。情绪识别最明显、信息最丰富的选择也是人脸。人脸更容易收集。该项目的主要贡献是睡意检测和警告,它基于人的睁眼或闭眼。
摘要尽管OOD每年造成数百万美元的经济和社会损失,但居住在发展中国家(例如巴西)的许多人由于其成本而无法访问Ood Alert System。为了解决这个问题,我们提出了一个廉价且强大的河流洪水检测系统,可以将其放在任何河流中,并在其床边处有一个地面。我们系统的新颖性是使用o的原始图像,无需预处理。因此,我们的方法可以使用城市环境中现有的监视摄像机进行部署。建议的系统通过使用深神经网络(DNNS)对河水刀片进行语义分割来测量河流水平。然后,它使用计算机视觉(CV)来估计水位。如果水位接近或高于危险阈值,则它会在没有人类干预的情况下自动发送警报。此外,我们的系统可以以3.32 cm的平均绝对误差(MAE)的平均绝对误差(MAE)成功测量河流的水位,这足以检测到何时何时过度OW。该系统也可靠地从不同的相机观点和照明条件来测量河流水位。我们展示了我们的方法的生存能力,并评估了原型的
摘要本文介绍了一种基于实时检测、使用图像处理和人机交互的情绪检测系统。面部检测已经存在了几十年。再进一步,人类的表情可以通过视频、电信号或图像形式捕捉到,并被大脑感受到。通过图像或视频识别情绪对人眼来说是一项艰巨的任务,对机器来说也具有挑战性,因此机器检测情绪需要许多图像处理技术来提取特征。本文提出了一个具有人脸检测和面部表情识别(FER)两个主要过程的系统。本研究重点是识别面部情绪的实验研究。情绪检测系统的流程包括图像采集、图像预处理、人脸检测、特征提取和分类。为了识别这种情绪,情绪检测系统使用 KNN 分类器进行图像分类,使用 Haar 级联算法(一种对象检测算法)来识别图像或实时视频中的人脸。该系统通过从网络摄像头拍摄实时图像来工作。本研究的目的是建立一个自动面部情绪检测系统来识别不同的情绪,基于这些实验,系统可以识别出悲伤、惊讶、快乐、恐惧、愤怒等几种情绪。
摘要 异常检测对于工业自动化和零件质量保证非常重要,虽然人类可以通过几个例子轻松检测出零件中的异常,但设计一个能够达到或超过人类能力的通用自动化系统仍然是一个挑战。在这项工作中,我们提出了一种简单的新异常检测算法,称为 FADS(基于特征的异常检测系统),该算法利用预训练的卷积神经网络 (CNN) 通过观察卷积滤波器的激活来生成标称输入的统计模型。在推理过程中,系统将新输入的卷积滤波器激活与统计模型进行比较,并标记超出预期值范围的激活,因此可能是异常。通过使用预训练网络,FADS 表现出与其他机器学习异常检测方法相似或更好的出色性能,同时 FADS 不需要调整 CNN 权重。我们通过检测增材制造晶格的自定义数据集上的工艺参数变化来展示 FADS 的能力。 FADS 定位算法表明,表面上可见的纹理差异可用于检测工艺参数变化。此外,我们在基准数据集(例如 MVTec 异常检测数据集)上测试了 FADS,并报告了良好的结果。
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、