启动子是重要的非编码DNA调控元件,与RNA聚合酶结合激活下游基因的表达。工业上人工精氨酸主要由谷氨酸棒杆菌合成,特定启动子区域的复制可增加精氨酸的产量,因此需要对谷氨酸棒杆菌中的启动子进行准确定位。在湿实验中,启动子的识别依赖于sigma因子和DNA剪接技术,这是一项费力的工作。为了快速方便地识别谷氨酸棒杆菌中的启动子,我们发展了一种基于新型特征表示和特征选择的方法来完成这项任务,通过多种理化性质的统计参数描述DNA序列,结合方差分析和层次聚类过滤冗余特征,其预测准确率高达91.6%,灵敏度91.9%可以有效识别启动子,特异性91.2%可以准确识别非启动子。此外,我们的模型可以在400个独立样本中正确识别181个启动子和174个非启动子,证明了所开发的预测模型具有良好的稳健性。
图3:li稳定性和Allzofim的短路电阻。(a)Allzo电解膜的电流响应在Li +从LI计数器电极到PT工作电极的电化学运输后,并反向相反。数字表示进行阻抗光谱测量的点。(b)在多个拼布和剥离的步骤后,AllzoFim部件与LI金属接触的阻抗响应的Nyquist图。插图显示了从阻抗光谱中提取的电解质电阻的演变。(c)对称LI/LI/LI细胞配置中Allzo电解质膜的电静脉反应。正向和反向电流密度范围为0。2 mA cm - 2最多3。2 mA cm -2以0的步骤施加。1 mA H CM - 2。
毛细作用可用于将各向异性胶体粒子引导到精确位置,并通过使用界面曲率作为施加场来定向它们。我们在实验中展示了这一点,在实验中,界面的形状通过钉扎到不同横截面的垂直柱上而形成。这些界面呈现出明确定义的曲率场,可沿复杂轨迹定向和引导粒子。轨迹和方向由理论模型预测,其中毛细作用力和扭矩与高斯曲率梯度和与曲率主方向的角度偏差有关。界面曲率在尖锐边界附近发散,类似于尖锐导体附近的电场。我们利用这一特性在优选位置诱导迁移和组装,并创建复杂结构。我们还报告了一种排斥相互作用,其中微粒沿曲率梯度轮廓远离平面边界壁。这些现象在微粒子和纳米粒子的定向组装中具有广泛的用途,在制造具有可调机械或电子性能的材料、乳液生产和封装方面有潜在的应用。