摘要 不锈钢、钛合金、钴铬合金等金属材料是应用最为广泛的骨科植入物,但在临床应用中仍存在金属与骨的力学不匹配、炎症、二次手术等问题。镁及其合金作为新一代医用金属材料,由于其优异的生物降解性而备受关注。可生物降解的镁基金属具有良好的力学性能和成骨性能,有望成为治疗棘手骨科疾病的植入材料。但腐蚀速度快仍是制约其临床应用的主要挑战之一,合金化和表面改性是控制镁合金腐蚀速度的有效方法。本文综述了可生物降解镁合金的力学性能、生物性能及其在临床应用中存在的问题,重点介绍了镁基金属在合金化和表面改性方面的最新进展,并介绍了镁基植入物在骨科的应用现状。
Swanson 指关节植入物是一种灵活的髓内柄一体式植入物,作为切除关节成形术的辅助手段,帮助因类风湿性、退行性或创伤性关节炎而致残的手部恢复功能。负载分配柔性铰链的中间部分设计用于帮助保持适当的关节间隙和对齐,具有良好的横向稳定性和最小的屈伸限制。植入物不固定在骨头上,而是通过封装过程变得稳定。它充当动态间隔器、内部模具和柔性铰链。Swanson 指关节植入物有 11 种尺寸可供选择,可充分满足各种解剖要求。提供颜色编码的尺寸套件(非无菌提供,不适合植入),以便在手术期间确定合适的尺寸。
“这项多中心研究的临床结果验证了 PGI 的新颖设计。与其他青光眼管分流术的已发表结果相比,该研究表明,PGI 能够优化难治性青光眼的眼压,同时降低对抗青光眼眼药水的依赖性,”副教授 Victor Koh 说道。该植入物已授权给初创公司 Advanced Ophthalmic Innovations Pte Ltd (AOI),并已用于新加坡、欧洲、南非、中东和亚太地区的青光眼治疗。创新团队于 2017 年获得了欧洲合格认证 (CE) 标志和卫生科学局 (HSA) 批准的 Paul ® 青光眼植入物,并于 2018 年获得了治疗用品管理局 (TGA) 认证。AOI 最近在中国开始临床试验,以确保获得国家药品监督管理局 (NMPA) 批准在中国进行临床销售。此外,AOI 还计划很快进行美国 FDA 监管备案。该产品已在美国、中国、新加坡和日本获得专利。目前,英国、爱尔兰、德国、荷兰、芬兰、意大利、葡萄牙、法国、西班牙、比利时、沙特阿拉伯、南非、韩国、马来西亚、澳大利亚和新西兰的顶级医院和眼科中心以及新加坡国立大学医院均在使用该产品。 “我们通过保罗青光眼植入物实现的一个重要目标是设计一种对眼内侵入性较小的分流器,其管子比传统植入物小得多,同时又不影响对各种顽固性青光眼的疗效,”英国 Moorfields 眼科医院的青光眼专家、新加坡国立大学医学院客座教授 Keith Barton 教授补充道。他还参与了 PGI 的设计阶段。四川音乐学院的新加坡音乐教授 Lee Tian Tee 教授于 2018 年和 2019 年在国立大学医院接受了植入。“我在 2016 年去做了一次眼科检查,以寻求治疗白内障的方法。就在那时,我发现自己也患有青光眼。经过我的眼科医生 Chew 教授的详细评估后,我的双眼都接受了保罗青光眼植入物 (PGI)。它大大缓解了我的眼压,不需要任何眼药水。”
摘要:芯片的词汇可以立即与启示录中的野兽的迹象相关联。和芯片本身已经迅速发展,尤其是由于神经功能停滞,尤其是在调节肢体运动方面的功能。这就是为什么在医学界,筹码的强加是人类生命的内容再次发挥作用的新希望。芯片强加的效果不是无效的,主要对芯片校准和对患者的干扰产生影响。对创新理论的扩散的研究需要兼容性的原理或原理,以便产品对人类具有价值。均由人类额头上写的名字和人类手上的数字666所戴的标记,背景是将敬拜从基督转移到活着的偶像。帕罗西亚(Parousia)那天之前的危机表明,义人应该使自己拥有选择对基督服从或转向野兽和他的形象的自由。
摘要 目前先进材料研究领域的技术更新倾向于关注生物医学材料的应用以及镁及其合金的利用。镁 (Mg) 作为可生物降解骨科植入物的替代材料已被广泛研究。最近关于 Mg 的潜在应用的研究涉及其机械性能、生物降解特性以及体外和体内测试。本研究旨在回顾 Mg 的性能、生产工艺、生物材料路线图以及 Mg 合金化学成分在骨科应用中的关注点。同时还强调了镁合金性能未来潜在的改进。 关键词:镁合金;可生物降解;骨科植入物;生物材料路线图 1. 简介。
[3] M.E.Moussa, C.I.Esposito, M.E.Elpers, T.M.Wright, D.E.Padgett,髋关节脱位增加全髋关节置换术中氧化锆股骨头的粗糙度:59 次检索分析,J. Arthroplasty。30 (2015) 713–717。https://doi.org/10.1016/j.arth.2014.10.036。
本文提供了一个多功能的神经刺激平台,该平台具有完全可植入的多通道神经刺激剂,用于长期进行涉及周围神经的大型动物模型。该植入物在陶瓷外壳中密封并封装在医疗级有机硅橡胶中,然后在100℃的加速衰老条件下连续15天进行了主动测试。刺激器微电子技术以0.6 µm CMOS技术实现,并采用串扰降低方案,以最大程度地减少跨渠道干扰,以及用于无电池操作的高速功率和数据遥测。配备了蓝牙低能无线电链路的可穿戴发射器,定制的图形用户界面可实时,远程控制的刺激。三个平行刺激器在三个通道上提供了独立的刺激,在三个通道中,每个刺激器通过多重刺激部位支持六个刺激位点和两个返回位点,因此植入物可以在多达36个不同的电极对时促进刺激。提出了电子产品的设计,密封包装的方法和电性能以及盐水中用电极进行体外测试。
这些特点对于减轻临床负担和让患者快速康复至关重要。[5] 为了应对这些挑战,重要的是将植入物小型化,使其可通过导管或注射器诱导。[6] 为了插入最终需要大于输送通道的物体,应在输送过程中将其转变为更小更薄的状态。[7] 输送通道相对于输送物体的尺寸越窄,在选择材料和设计时就必须做出越多的妥协。将软材料和功能材料与小型化技术相结合在应对这一挑战方面取得了重大进展。[8] 特别是,具有响应外部刺激而发生特征性时间瞬态形态变化的形状记忆材料在整个输送过程中实现了高度的变形和形状恢复功能。[9] 采用光刻技术制造了 2D、形状记忆和微孔网状电极,装入注射器并注射入大脑。 [10] 在通过注射器注射的输送阶段,网片被压缩成准一维形状,随后松弛并扩展以恢复其原始的二维形状。为了进一步增加植入物的维数,折纸 [6,11] 或受剪纸启发的 [12] 折叠元素已与增材制造技术相结合,以实现从二维平面到三维最终结构的形状变化。特别是,形状记忆聚合物的 3D 打印促进了患者定制支架的直接制造。 [13] 例如,具有剪纸结构的分叉支架在折叠状态下在血管内顺利移动,并通过外部刺激成功展开到最终位置。 [12] 然而,传统的折纸或剪纸装置只能达到简单的最终三维几何形状,这受到固有基底结构的限制。因此,需要提高形状可变形性,并在原始状态和变形状态之间达到更高的纵横比。这项技术改进将带来各种各样的应用,包括可变形电子设备和支架设备等生物医学设备。在本研究中,我们提出了一种 3D 打印的独立元素设计,灵感来自高度可变形的日本表演工具,称为南京玉足垂(也称为南京玉足垂;“南京”,南京的名字)
多年来,金属,聚合物和陶瓷已经在各种医疗植入物中找到了应用。金属被广泛用于承载植入物中,范围从板,骨折固定的螺钉到臀部,膝盖,肩膀,脚踝等的关节假体。最常用的金属是316升不锈钢,钴铬合金,钛合金和镁合金[3,4]。聚合物已用于面部假体,肾脏和肝脏部位,心脏成分,假牙和髋关节,膝关节,例如,超高分子量聚乙烯(UHMWPE)载荷装置[4]阀[5]。陶瓷用于替换或修复硬结核组织,例如高强度,韧性和表面饰面,例如骨骼和牙齿[6]。