发起人地址:Robert Weerts PO Box 897 Winnebago, MN 56098 发起人代理 ISG Nick McCabe 115 East Hickory Street, Suite 300 Mankato, MN 56001 项目位置:项目地点位于明尼苏达州蓝地球县丹维尔镇第 4 区(北 105,西 25 范围),勒苏尔河(32)主要流域内。近似 UTM 坐标为区域 15,N 433098.00322,E 4865338.612692。纬度 43.938128,经度 -93.833592。河岸服务区:拟建的河岸服务区 (BSA) 是明尼苏达州的明尼苏达河 (BSA 9) 河流域。项目描述:这是对 2022 年 7 月 5 日发布的先前公告的更新。赞助商提议采用一种新的场地设计,其出口不依赖于 County Ditch 5 堰。更新后的设计显示在随附的标有 MVP-2011-05160-MVM 第 3 页(共 4 页)的图形上。赞助商仍提议开发位于三个地块上的 50.8 英亩的 Weerts 湿地银行。在地役权范围内,50.1 英亩为行栽作物农业,0.7 英亩为林地。历史图像表明,在 1979 年之后的农业作业之前,该场地历史上曾是湿地盆地。拟议的地役权区域由地下排水管和明渠排水。现有植被包括栽培的行栽作物、光滑雀麦草和芦苇草,东南角的小树林主要以普通朴树为主。银行发起人提议通过恢复(修复)深沼泽、浅沼泽和湿草甸湿地群落来恢复和维护湿地盆地的水文。恢复活动包括禁用地下排水管、禁用泵站以及对湿地群落和水下溢洪道进行分级。此外,发起人还提议在相邻明沟的河岸安装乙烯基板桩,以保护湿地免受横向排水的影响。发起人提议通过管理活动来恢复和维护本地湿地和高地植物群落,包括割草、施用除草剂和/或控制燃烧。项目需求和目标:由于 BSA 9 内的农业活动、社区发展和交通项目,湿地信贷需求量很大。浅沼泽和深沼泽
Bascompte,J.,García,M。B.,Ortega,R.,Rezende,E.L。,&Pironon,S。(2019)。相互互动改造气候变化对整个生命树的植物的影响。科学进步,5,EAAV2539。Bond,W。J.(1994)。互助主义重要吗?评估策略和分散器破坏对植物灭绝的影响。伦敦皇家学会的哲学交易。系列B:生物科学,344,83–90。 Botha,P。W.(2017)。 没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。 Stellenbosch大学。 Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y. B.,Warsi,O。,&Wiens,J。J. (2013)。 气候变化如何导致灭绝? 皇家学会会议录B:生物科学,280,20121890。 克拉克,A。 (1996)。 气候变化对生物体分布和演变的影响。 在I. 中 A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。系列B:生物科学,344,83–90。Botha,P。W.(2017)。 没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。 Stellenbosch大学。 Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y. B.,Warsi,O。,&Wiens,J。J. (2013)。 气候变化如何导致灭绝? 皇家学会会议录B:生物科学,280,20121890。 克拉克,A。 (1996)。 气候变化对生物体分布和演变的影响。 在I. 中 A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。Botha,P。W.(2017)。没有鸟类的世界:对构粉鸟类对植物群落的生态意义的实验检验(博士学位论文)。Stellenbosch大学。Cahill,A。E.,Aiello-Lammens,M。E.,Fisher-Reid,M.C.,Hua,X.,Karanewsky,C.J.,Ryu,H。Y.B.,Warsi,O。,&Wiens,J。J.(2013)。气候变化如何导致灭绝?皇家学会会议录B:生物科学,280,20121890。克拉克,A。(1996)。气候变化对生物体分布和演变的影响。在I.A. Johnston和A. F. Bennett(编辑。 ),动物和温度:表型和进化适应(卷 59,pp。 375–407)。 剑桥大学出版社。 A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。A. Johnston和A. F. Bennett(编辑。),动物和温度:表型和进化适应(卷59,pp。375–407)。剑桥大学出版社。A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。 模型平均生态学:贝叶斯,信息理论和战术方法的回顾。 生态专着,88,485–504。 Geerts,S。(2011)。A.,Wood,S.N.,Wuest,R。O.,&Hartig,F。(2018)。模型平均生态学:贝叶斯,信息理论和战术方法的回顾。生态专着,88,485–504。Geerts,S。(2011)。Dormann,C.,Calabrese,J.,Guillera-Arroita,G.,Matechou,E. B.Dormann,C。F.,Elith,J.,Bacher,S.,Buchmann,C.,Carl,G.,Carré,G.,Marquéz,J.,Gruber,B.,Lafourcade,B.,Leitão,Leitão,p。 J.(2013)。colnearity:对处理IT的方法和评估其性能的模拟研究的综述。coporivy,36,27–4J.,Graham,C.H.,Anderson,R.P.,Dudík,M.,Ferrier,S.,Guisan,A.,Hijmans,R.J.,Huettemann,F.,Leathwick,J.R. a。,Maninon,G.,Moritz,C.,Caure,M.,Cazawa,Yawa,YA,Overton,J.M. S.和Zimmermann,N。E.(2006)。 新颖的方法改善了从动力数据中对物种分布的预测。 生态学,29,129–1 Freeman,B。G.,Scher,M。N.,Ruiz-Gutierrez,V。和Fitzparick,J。W.(2018)。 气候变化会导致热带鸟类社区的上坡变化和山顶。 国家科学院会议录,115,11982–1 <非洲开普敦的鸟类授粉粉的分散和分散(博士学位论文)。 Stellenbosch大学。 Geerts,S。和Adedoja,O。 (2021)。 生物入侵,23,2961–2 (2020)。 (2012)。J.,Graham,C.H.,Anderson,R.P.,Dudík,M.,Ferrier,S.,Guisan,A.,Hijmans,R.J.,Huettemann,F.,Leathwick,J.R.a。,Maninon,G.,Moritz,C.,Caure,M.,Cazawa,Yawa,YA,Overton,J.M. S.和Zimmermann,N。E.(2006)。新颖的方法改善了从动力数据中对物种分布的预测。生态学,29,129–1Freeman,B。G.,Scher,M。N.,Ruiz-Gutierrez,V。和Fitzparick,J。W.(2018)。气候变化会导致热带鸟类社区的上坡变化和山顶。国家科学院会议录,115,11982–1<非洲开普敦的鸟类授粉粉的分散和分散(博士学位论文)。Stellenbosch大学。Geerts,S。和Adedoja,O。(2021)。生物入侵,23,2961–2(2020)。(2012)。授粉和繁殖增强了早期入侵者的侵入性潜力:南非的Lythrum sali-Caria(紫色散落)案例。Geerts,S.,Coetzee,A.,Rebelo,A。G.,&Pauw,A。授粉结构植物和南非角的植物和喂养鸟类群落:对保护植物 - 鸟类共同主义的影响。生态学研究,35,838–856。Geerts,S.,Malherbe,S。D.,&Pauw,A。南非角植物植物中的火花鸟类减少了花蜜喂养鸟类的鲜花。鸟类学杂志,153,297–301。Geerts,S。,&Pauw,A。(2009)。非洲阳光悬停以授粉的蜂鸟 - 授粉植物。Oikos,118,573–579。 Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。 全球变暖和植物 - 授粉不匹配。 生命科学的新兴主题,第4、77-86页。 Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Oikos,118,573–579。Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。 全球变暖和植物 - 授粉不匹配。 生命科学的新兴主题,第4、77-86页。 Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Gérard,M.,Vanderplanck,M.,Wood,T。和Michez,D。(2020)。全球变暖和植物 - 授粉不匹配。生命科学的新兴主题,第4、77-86页。Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。 气候变化,范围移动以及传粉媒介植物复合物的破坏。 科学报告,9,1-10。Gómez-Ruiz,E。P.和Lacher,T。E.,Jr。(2019)。气候变化,范围移动以及传粉媒介植物复合物的破坏。科学报告,9,1-10。
农业生物多样性和气候变化:田野边缘的植被在仅10年的科学家中发生了变化,而ANSES和ANSES一直在研究法国大陆500个农业地块的田间边缘植被的变化,以了解气候变化和农业习惯如何影响这些工厂。他们的结果在生态信中发表,表明在10年内,这些地块的平均温度增加了1.2°C,土壤水分下降了14%。这项工作表明,田间边缘的植物群落发生了变化,对热和干燥的物种更容易受到损害(即那些能够承受与农业实践相关的破坏的人)。气候变化缓解措施,例如植物覆盖和农林业,或减少农业投入的使用,将有助于维护这种生物多样性适应的能力。在法国,农业景观的生物多样性在生物多样性保护策略中发挥了越来越多的作用。田间边缘在自然环境和耕地之间占据了中间位置。他们特别感兴趣地研究农业实践和气候变化对生物多样性的影响。这是因为这些边缘是杂草物种(切割者,蓟爬到蓟)的所在地,它们或多或少地适合于农业中的破坏,以及保存重要的草地(普通的栗色,草原vetchling)。这些边缘作为许多物种的避难所和走廊也起着至关重要的生态作用,包括驱除或调节害虫的有益昆虫和物种。由500个地块组成的网络,用于研究2012年的田野边缘生物多样性,根据Ecophyto计划,农业部建立了500个ENI生物保护网络,以监视农业实践对现场边缘生物多样性的意外影响。选择了大约500个地块代表法国大陆的农业系统,其中20%是有机的,涵盖了三种农作物:耕作,藤蔓和市场花园农产品。在2013年至2021年之间,科学家分析了植物数据,来自Météo-france(温度,土壤水分)的气象数据以及农民所报告的农业实践数据,包括使用肥料和除草剂,以及通过割草的植被管理。气候变化对农业地块的明显影响,其结果显示500个地块的气候变化非常明显,平均温度升高为1.2°C,土壤水分的平均温度在近10年内下降了14%。同时,除了割草场边缘的频率略有下降外,500个地块上的耕作实践没有显着变化。取决于它们所居住的物种和环境,植物可以采用三种基本策略:•压力耐受性,与植物承受环境限制的能力有关,导致资源缺乏资源(干燥,不育土壤等)。),
相互作用网络弹性可以定义为相互作用的生物体在遭受干扰后维持其功能、过程或种群的能力。研究植物与传粉媒介沿环境梯度的互利相互作用,对于理解生态系统服务的提供及其网络弹性的挑战机制至关重要。然而,气候梯度上的生态变化在多大程度上限制了互利生物体的网络弹性,尤其是在海拔梯度上,仍然未知。我们在东非肯尼亚东部非洲山地生物多样性热点地区沿海拔梯度(海拔 525 米至 2,530 米)的 50 个研究地点调查了蜜蜂物种,并记录了它们在四个主要季节(即长雨季和短雨季以及长旱季和短旱季)与植物的相互作用。我们使用网络弹性参数 (βeff) 计算了蜜蜂和植物网络的弹性,并使用广义加性模型 (gams) 评估了蜜蜂和植物网络弹性沿海拔梯度的变化。我们运用一系列多模型推理框架和结构方程模型 (SEM),量化了气候、蜜蜂和植物多样性、蜜蜂功能性状、网络结构和景观配置对蜜蜂和植物网络弹性的影响。我们发现,蜜蜂和植物物种在较高海拔地区表现出更高的网络弹性。蜜蜂网络弹性随海拔梯度呈线性增长,而植物网络弹性从约 1500 米及以上呈指数增长。在年平均气温 (MAT) 降低的地区,蜜蜂和植物网络弹性增加,而在年平均降水量 (MAP) 较低的地区,蜜蜂和植物网络弹性减少。我们的 SEM 模型表明,气温升高通过网络模块度和蜜蜂群落聚集间接影响植物网络弹性。我们还发现,MAP 对植物多样性和网络弹性有直接的正向影响,而栖息地的破碎化则降低了植物群落的丰富度并提高了网络模块度。总之,我们发现互利网络在较高海拔地区表现出更高的网络弹性。我们还发现,气候和栖息地破碎化通过调节群落组合和相互作用网络,直接或间接地影响植物和蜜蜂的网络恢复力。这些影响在高海拔地区较低,因此这些系统似乎能够更好地缓冲灭绝级联效应。因此,我们建议,管理工作应着眼于巩固自然栖息地。相比之下,恢复工作应着眼于减轻气候变化的影响,并利用互利共生生物重新连接断裂环节的能力,以改善东非山地生态系统的网络恢复力和功能。
土壤的微生物群落通过养分循环与土壤的生育有很密切的联系(Bradford等,2016; Luo等,2016; Iwaoka等,2018; Ochoa-Hueso等,2018,2018年),并为了解与Microbial Commusity Comporties and Sover and Sorie and and Sover(Bastire)的努力(b。 Al。,2017年; Delgado-Baquerizo等人,2018b)。几项研究表明,双向植物和微生物反馈,表明植物通过土壤温度,水分,物理结构,垃圾质量和根部渗出液的变化来塑造土壤微生物群落的多样性和组成(Hartmann等,2009; Haichar et al。,2014; Hortal等,2014; Hortal等,2017)。反过来,土壤微生物群落通过改变影响生态系统功能的植物性能和功能性状(即营养周期和生产力)来影响植物群落的结构(Bardgett等,2014; Lozano等,2017)。然而,除了微生物环境外,植物 - 微生物的关系可能会影响土壤微生物群落的组成和多样性(Burns等,2015; Prober等,2015;šTursova;ŠTursovaet al。,2016; 2016; 2016; van Nuland et al。生态系统(John等,2007; McCarthy-Neumann和Kobe,2010; Liu等,2012; Waring,2013)。哥斯达黎加拥有地球上最生物多样性的地区,但有关土壤和叶子垃圾微生物组的多样性和组成的信息很少。对于与商业和非商业野生香草物种相关的叶窝和土壤的微生物生态学显而易见的信息差距。近年来,一些研究专注于哥斯达黎加的土壤微生物群落,其中大多数以真菌群落的特征为中心(Nemergut等,2010; Leff et al。,2012; Kivlin and Hawkes,2016; Kivlin and Hawkes,2016; Schilling等,2016; Schilling et al。,2016; Waring et al。 McGee等,2018)。香草属的重要性主要在于其商业物种V. Planifolia,V。Tahitensis和V. Pompona,它们是食品和香水工业使用的Vanillyl化合物的天然提供者(Korthou and Verpoorte,2007; Ranadive,2011; Ranadive,2011; Maruenda et e al an al an al an al''。在哥斯达黎加中,香草的遗传库占全球多样性的10%以上(Azofeifa-Bolaños等,2017; Karremans和Lehmann 2018)。尽管普莱里亚里亚(V. planifolia)的经济重要性很少,但对香草作物野生亲戚的关注很少,其特征是小,分散和遗传上不同的人群,其自然栖息地中种子生存能力较低且具有复杂的特殊关系(Alomia等人,2017年; Azofeifa-Bololaunños等人,2018年)。表征本地森林土壤和叶子微生物群落是保存香草属的重要第一步。濒临灭绝的遗传资源以及在现场和原位生产系统中的作物管理策略的改善(Watteyn等,2020)。
单位-VI:植物的内部组织:开花植物的组织学和解剖学:组织 - 类型,结构和功能;分生物:永久组织 - 简单而复杂的组织。组织系统 - 类型,结构和功能;表皮,地面和血管组织系统。二核和单子叶植物的解剖结构 - 根,茎和叶,双子茎和双子根的二级生长。单位-VII:植物生态学:生态适应,继任和生态服务:简介。植物群落和生态适应:氢植物,叶肉和叶叶植物。植物继承。生态服务固定,氧气释放以及如何维持生态功能。UNIT-VIII: PLANT PHYSIOLOGY: Transport in Plants : Means of Transport- Diffusion, Facilitated Diffusion, Passive symports and antiports, Active Transport, Comparison of Different Transport Processes, Plant-Water Relations- Water Potential, Osmosis, Plasmolysis, Imbibition, Long Distance Transport of Water- Water Movement up a Plant, Root Pressure, Transpiration pull, Transpiration- Opening and Closing of Stomata, Transpiration and光合作用 - 矿物营养素的折衷吸收和运输 - 矿物离子的摄取,矿物离子的易位,韧皮部的运输:从源到水槽的流动 - 压力流量或质量流量假设。酶:化学反应,酶转化,酶作用的性质,影响酶活性,温度和pH值的因素,底物的浓度,酶的分类和命名法,副因素。矿物质营养:研究植物的矿物质需求,必不可少的矿物元素 - 必不可少的标准,大量营养素,微量营养素,宏观的作用,宏观和微观 - 养分 - 基本元素的缺乏症状,微生酸的毒性,微量营养素的毒性,微量营养素的毒性,元素吸收的机制,肯定的元素,土壤的吸收机制 - 土壤的综合元素 - 土壤疾病,疾病 - 土壤的综合元素,源于土壤的疾病,源自氮循环,生物氮固定,共生氮固定,结节形成。Photosynthesis in Higher Plants : Early Experiments, Site of Photosynthesis, Pigments Involved in Photosynthesis, Light Reaction, The Electron Transport-Splitting of Water, Cyclic and Noncyclic Photo-phosphorylation, Chemiosmotic Hypothesis, Biosynthetic phase- The Primary Acceptor of CO2, The Calvin Cycle, The C4 Pathway, Photorespiration, Factors affecting Photosynthesis.植物的呼吸:细胞呼吸,糖酵解,发酵,有氧呼吸 - 三羧酸循环,电子传输系统(ETS)和氧化磷酸化,呼吸平衡表,两性途径,两性途径,呼吸商,呼吸商。植物生长和发育:植物生长,生长阶段,生长速率,生长条件,分化,去分化和重新分化,发育,植物生长,调节剂 - 植物生长调节剂的生理影响,生长素,gibberellins,gibberellins,cytokinins,entokinins,ethytokinins,ethylene,乙烯,超酸种子病毒不相同,光疗法,veroperiodism,Veroperionisp。
专业经验 IVM Partners, Inc.(综合植被管理合作伙伴)总裁 2003 年至今 IVM Partners, Inc. 是一家 501-C-3 非营利性公司,致力于开发、教育专业人员和公众并应用综合植被管理实践,以提供安全、可靠和方便的公用事业和公路通行权 (ROW),改善野生动物和濒危物种栖息地,控制外来杂草,降低野火风险。我们发展行业和政府之间的合作伙伴关系,以便采用最佳实践以安全、经济和对环境负责的方式解决军事设施、社区、森林、公园、高尔夫球场和野生动物保护区的植被管理问题;并与大学和保护组织合作,就植被管理实践中的区域地理生理差异进行研究和传播信息。 2025 通过 Blackwater NWR 与 USFWS 和马里兰州自然资源部区域建立合作伙伴关系并监测 Choptank Electric Cooperative ROW 的 IVM 栖息地恢复。 2025 为弗吉尼亚州 Apex 清洁能源公司的 Riverstone 太阳能项目开发 IVM 生态系统恢复案例研究。 2024 正在为北卡罗来纳州 Apex 清洁能源公司的 Timbermill 风能项目开发 IVM 生态系统恢复案例研究。 2023 正在马里兰州埃尔克顿 Patriots Glen 高尔夫球场开发 IVM 案例研究,以监测湿地和高地栖息地中本地植物的栖息地恢复情况。 2023 正在北卡罗来纳州开发 Piedmont Natural Gas (Duke Energy) ROW 的 IVM 案例研究,以监测从年度割草到 IVM 的栖息地变化过渡。 2023 正在与 Envu 建立业务合作伙伴关系,以开发 IVM 案例研究和传粉者地价指数 (PSVI) 指标,以确定恢复的栖息地效益。 2022 开发马里兰州公用事业和高速公路 ROW、高尔夫球场和农业的案例研究,以便根据 ANSI A-300 第 7 部分-IVM 进行 IVM 最佳实践的实地参观教育。 2022 开发 IVM 项目并指导俄克拉荷马州 Energy Transfer 天然气草原栖息地恢复的生态系统研究。2022 开发 IVM 项目并指导 TC Energy 和 WSSI 的生态系统研究,与西弗吉尼亚州自然资源部合作,研究通过西弗吉尼亚州杰克逊堡附近的 Lewis Wetzel 野生动物管理区的页岩气输送 ROW。2021 与拜耳和科罗拉多州弗吉尼亚戴尔附近的沃尔堡加修道院合作开展雀麦草控制和牧场恢复研究。2020 年与拜耳和克莱姆森大学合作,在南卡罗来纳州开展关于 Dominion Energy 电力 ROW 的 IVM 案例研究。2019 与先正达公司持续开展业务合作,开发 IVM 案例研究和传粉媒介站点价值指数 (PSVI) 指标,以确定恢复的栖息地效益 2018 为路易斯安那州交通部和安特吉公司提供有关州际公路 ROW 沿线新电力传输清理的建议,以恢复本地早期演替植物群落。 2018 持续协助特拉华州和马里兰州农业部采用 IVM 最佳实践,恢复农田和税沟周围 CRP 土地沿线的本地传粉媒介和鸟类栖息地,并减少切萨皮克湾和沿海海湾的径流和泥沙沉积。
1. Garcia-Bastidas, F. 等人。哥伦比亚首次报道由 Fusarium odoratissimum 引起的卡文迪什香蕉枯萎病热带小种 4。APS 出版物。(2019 年)。259 https://doi.org/10.1094/PDIS-09-19-1922-PDN 260 2. Varma, V. 和 Bebber, DP。气候变化对全球香蕉产量的影响。Nat. 261 Clim. Change 9 , 752-757 (2019)。262 3. Simmonds, NW 和 Shepherd, K。栽培香蕉的分类和起源。J. 263 Linn. Soc. Bot。55 , 302-312 (1955)。 264 4. Gold, CS、Kiggundu, A.、Abera, AMK 和 Karamura, D. 乌干达 Musa 品种的多样性、分布和农民偏好。Exp. Agric. 38, 39-50 (2002)。 266 5. Gambart, C. 等人。农业生态集约化战略对农场绩效的影响和机遇:乌干达中部和西南部香蕉种植系统案例研究。食品系统可持续发展前沿。23, 87 (2020)。 269 6. Wielemaker, F. 引自:Kema, GHJ 和 Drenth, A. (eds.)。实现香蕉的可持续种植。第 1 卷:栽培技术。伯利·多德农业科学系列。 271 Burleigh Dodds Science Publishing,英国剑桥(2018 年)。272 7. Ordonez,N. 等人。最糟糕的情况是香蕉和巴拿马病——当植物和病原体克隆相遇时。PLoS Pathog。11,e1005197(2015 年)。274 8. Ndayihanzamaso,P. 等人。开发用于检测东非和中非尖镰孢菌古巴专化种谱系 VI 菌株的多重 PCR 检测方法。欧洲植物病理学杂志(2020 年)。277 9. Soluri,J。口味的解释:出口香蕉、大众市场和巴拿马病。环境。278 Hist。7,386-410(2002 年)。 279 10. Stover, RH 疾病管理策略和香蕉产业的生存。植物病理学年鉴。24 ,83-91 (1986)。281 11. Bubici, G.、Kaushal, M.、Prigigallo, MI、Gómez-Lama Cabanás, C. 和 Mercado-Blanco, J. 香蕉枯萎病的生物防治剂。微生物学前沿。10 ,616 (2019)。283 12. Kaushal, M.、Mahuku, G. 和 Swennen, R. 枯萎病感染田中有症状和无症状香蕉相关的根部定植微生物组的宏基因组学见解。植物。9 ,263 (2020)。 286 13. Mollot, G.、Tixier, P.、Lescourret, F.、Quilici, S. 和 Duyck, PF 新的主要资源增加了对香蕉农业生态系统中害虫的捕食。农业与昆虫学。14 , 317-323 288 (2012)。 289 14. Djigal, D. 等人。覆盖作物改变香蕉农业生态系统中土壤线虫食物网。土壤生物化学。48 , 142-150 (2012)。 290 15. Karangwa, P. 等人。东非和中非尖镰孢菌古巴专化的遗传多样性。植物疾病。102 , 552-560 (2018)。 293 16. Jassogne, L. 等人。咖啡/香蕉间作为乌干达、卢旺达和布隆迪的小农咖啡 294 农民提供了机会。在 G. Blomme、P. Van Asten 和 B. Vanlauwe 中,撒哈拉以南非洲湿润高地的香蕉系统(第 144-149 页)。国际农业和生物科学中心。沃灵福德:CABI。(2013 年)。 17. Norgrove, L. 和 Hauser S. 喀麦隆南部农林业系统中不同树木密度和“刀耕火种”与“刀耕火种”管理下芭蕉的产量。大田作物研究。78,185-195(2002 年)。 18. Zhu, Y. 等人。水稻遗传多样性和疾病控制。自然 406,718-722(2000 年)。 19. Deltour, P. 等人。农林复合系统对香蕉枯萎病的抑制作用:土壤特性和植物群落的影响。农业生态系统环境。239,303 173-181(2017 年)。304