没有时间调整,需要对其他位置的每日降水量测量值保持一致,以解释日光节省时间。这些位置进行一年一度的一小时换档,需要每日降水读数和其他气象元素之间的时间对齐,因为半小时的降水数据在标准时间始终记录下来。然后,我们使用该站完整的半小时沉淀数据执行此插值数据的内部连接。这导致了一个时间序列,该时间序列可以追溯到半小时的降水记录开始日期。我们在2020年至2022年的所有数据上测试模型,使用2018和2019作为验证设置,以防止模型过度拟合并在其余数据上进行训练。这会导致大约75%-10%-15%的火车验证测试拆分。训练数据集进行了改组,以允许该模型从每批更具代表性的样本中学习。
摘要 - 大语言模型(LLM)的最新进展彻底改变了许多研究领域。在机器人技术中,通过解锁前所未有的上下文意识级别,将常识性知识整合到下游任务中已大大推动了该领域。尽管知识收集了大量知识,但由于幻觉或缺少域信息,LLM可能会产生不可行的计划。为了应对这些挑战并提高计划的可行性和计算效率,我们介绍了Delta,这是一种新颖的LLM知名任务计划方法。通过使用场景图作为LLM中的环境表示,Delta实现了快速生成精确的计划问题描述。为了提高计划绩效,Delta将LLMS的长期任务目标分解为自回归的子目标序列,从而使自动化的任务计划人员能够有效地解决复杂的问题。在我们的广泛评估中,我们表明,与艺术品相比,达美航空可以实现高效且全自动的任务计划管道,达到更高的计划成功率,并明显较短的计划时间。