摘要:光子综合电路正在成为一个有前途的平台,用于加速深度学习中的矩阵乘法,利用光的固有平行性质。尽管已经提出并证明了各种方案是为了实现这种光子矩阵加速器,但由于在光子芯片上直接芯片后反向传播的困难,使用光子加速器对人工神经网络的原位培训仍然具有挑战性。在这项工作中,我们提出了一个具有对称结构的硅微孔谐振器(MRR)光学横杆阵列,该横梁允许简单的芯片反向传播,有可能使深度学习的推理和训练阶段加速。我们在Si-On-On-On-On-On-On-On-On-On-On平台上演示了一个4×4电路,并使用它来执行简单神经网络的推理任务,用于对虹膜花进行分类,从而达到了93.3%的分类精度。随后,我们使用模拟的芯片反向传播训练神经网络,并在训练后同一推理任务中达到91.1%的精度。此外,我们使用9×9 MRR横梁阵列模拟了卷积神经网络(CNN)进行手写数字识别,以执行卷积操作。这项工作有助于实现紧凑和节能的光子加速器进行深度学习。
关键字; UTBB 28NM FD-SOI,Analog SNN,Analog Envm,Envm Integration。2。简介基于新兴的非易失性记忆(ENKM)横杆的尖峰神经网络(SNN)是有希望的内存计算组件,这些组件具有出色的能力,可在边缘低功率人工智能。然而,Envms突触阵列与28nm超薄体和掩埋的氧化物完全耗尽的硅在绝缘子中(UTBB-FDSOI)技术节点的结合是一个挑战。在模拟尖峰神经网络(SNN)中,输入神经元通过单位驱动器透射器(1T1R)突触与输出神经元互连,并通过突触量通过突触转换为电流的电压尖峰来完成计算[1]。神经元会积聚尖峰到预定义的阈值,然后产生输出尖峰。神经元能力区分和容纳大量突触和输入尖峰的能力直接与直至神经元的射击阈值的电压摆动直接相关。这主要取决于膜电容,突触电荷的净数和低功率神经元的阈值[2]。
与人类视觉相比,由图像传感器和处理器组成的传统机器视觉由于图像感测和处理在物理上分离,存在高延迟和大功耗的问题。具有大脑启发视觉感知的神经形态视觉系统为该问题提供了一个有希望的解决方案。在这里,我们提出并演示了一种原型神经形态视觉系统,该系统通过将视网膜传感器与忆阻交叉开关联网。我们使用具有栅极可调光响应的 WSe 2 /h-BN/Al 2 O 3 范德华异质结构来制造视网膜传感器,以紧密模拟人类视网膜同时感测和处理图像的能力。然后,我们将传感器与大规模 Pt/Ta/HfO 2 /Ta 单晶体管单电阻 (1T1R) 忆阻交叉开关联网,该交叉开关的作用类似于人脑中的视觉皮层。实现的神经形态视觉系统可以快速识别字母和跟踪物体,表明在完全模拟状态下具有图像感测、处理和识别的能力。我们的工作表明,这种神经形态视觉系统可能会为未来的视觉感知应用开辟前所未有的机会。