植物产生多种次生代谢产物,这些产物对植物的主要功能(如生长、防御、适应或繁殖)起着至关重要的作用。一些植物次生代谢产物可作为营养品和药物对人类有益。代谢途径及其调控机制对于靶向代谢物工程至关重要。成簇的规律间隔短回文重复序列 (CRISPR)/Cas9 介导的系统已广泛应用于基因组编辑,具有高精度、高效率和多重靶向能力。除了在遗传改良中的广泛应用外,该技术还促进了与涉及各种植物次生代谢途径的基因发现相关的功能基因组学的全面分析方法。尽管应用广泛,但仍有几个挑战限制了 CRISPR/Cas 系统在植物基因组编辑中的适用性。本综述重点介绍了 CRISPR/Cas 系统介导的植物代谢工程的最新应用及其挑战。
自然灾害领域中一个很少研究的问题是洪水对危险材料的二次影响。洪水期间,可能会发生危险材料事故,但由于担心主要灾害影响,这些事故可能会被忽视。这些事故可能以各种方式发生。旧的危险材料“倾倒”地点可能会被破坏,化学物质可能会被洪水扩散。储存危险材料(例如汽油或石油供应)的地下储罐的完整性也可能构成威胁。储存的化学品或废物桶可以通过简单地漂走而移动,由于许多这些容器没有标签,它们可能构成未知级别的危险。在冲击后时期可能会出现意想不到的危险材料问题。Lafornara 等人(1978 年)在他们关于约翰斯敦洪水的研究中引用了此类危害。他们表明,如果食品配送设施的制冷系统出现故障,它们可能会面临高细菌数量和危险化学品。气体可能会聚集在该区域,从而引起爆炸。储存化学品的商业机构和家庭构成了另一种威胁。容器可能在洪水中受损,导致其中的物品泄漏并与其他化学品混合。此外,破裂的储罐或管道中的气体可能会积聚在下水道系统中并引起爆炸。
该项目首次采用氧化物分子束外延 (MBE) 来生长 KTaO ₃ (KTO) 薄膜。早期生长使用 (100) SrTiO ₃ (STO) 基材进行,以尝试微调生长参数。此外,还使用了通过炉加热的 TaO ₂ 亚氧化物源和通过电子束加热的 Ta 源,并分析和比较了它们各自的薄膜。通过反射高能电子衍射 (RHEED) 进行原位监测,以及通过原子力显微镜 (AFM) 和 X 射线衍射 (XRD) 进行生长后表征,可以在整个项目中进行表面和晶体分析。来自亚氧化物和电子束加热 Ta 源的薄膜显示出相似的晶体质量,然而,在亚氧化物生长的 KTO 表面上发现更高浓度的氧化物杂质。成功生长 KTO 后,使用稀土钪酸盐 (110) 衬底 GdScO ₃ (GSO) 和 DyScO ₃ (DSO),因为它们与 KTO 的“立方体对伪立方体”界面将分别产生理论上 0.55% 和 0.93% 的压缩应变。通过逆空间映射 (RSM),GSO 衬底在 KTO 薄膜上显示出相称的应变,而 DSO 衬底仅显示部分应变。总体而言,使用 MBE 生长 KTO 可实现高结晶质量,为 KTO 薄膜合成和铁电 KTO 分析指明了光明的未来。
德国燃煤电厂的旧址需求旺盛:用于生产绿色氢气、作为燃气发电厂、作为储存设施或作为电网服务厂(如同步电容器)。它们的大部分基础设施都可以重新利用。甚至十年前被废弃的发电厂也正在被重新发现。
由于大量汽车锂离子电池将在未来十年内退役,退役汽车锂离子电池 (LIB) 的二次生命和回收利用引起了越来越多的关注。在这里,我们说明了电池化学、使用和回收如何影响 LIB 的能源和环境可持续性。我们发现,具有更高比能量的 LIB 表现出更好的生命周期环境性能,但它们从二次生命应用中获得的环境效益并不明显。直接阴极回收被发现在减少生命周期环境影响方面最有效,而湿法冶金回收为高性能 LIB 提供的可持续性效益有限。使用更少铝和替代阳极材料(例如硅基阳极)的电池设计可以实现更可持续的 LIB 回收。与直接回收电动汽车使用后的 LIB 相比,二次生命后回收的 LIB 的碳足迹和能源使用可分别减少 8% 至 17% 和 2% 至 6%。
1 克尔曼沙赫医科大学健康研究所药学科学研究中心,克尔曼沙赫 6734667149,伊朗; sajad.fakhri@kums.ac.ir 2 克尔曼沙赫医科大学学生研究委员会,克尔曼沙赫 6734667149,伊朗; abdian.ph@gmail.com (南非); Nazanin.Zarneshan75@gmail.com (SNZ) 3 加齐大学药学院生药学系,06330 安卡拉,土耳其; esrak@gazi.edu.tr 4 圣地亚哥德孔波斯特拉大学药学院有机化学系,15782圣地亚哥德孔波斯特拉,西班牙 5 智利中央大学健康科学学院研究生研究学院,智利圣地亚哥 8053.com(MHF); e.sobarzo@usc.es 或 eduardo.sobarzo@ucentral.cl (ES-S.)† 这些作者对这项工作做出了同等贡献。
Dzubak 等人,2005) 发现其广泛分布于植物界。Yin 等人 (2012) 报道了来自不同蔬菜和水果的八种三萜 (齐墩果酸、熊果酸、阿江梨酸、积雪草酸、乳香酸、科罗索酸、羟基积雪草酸和山楂酸) 以完整形式在小鼠不同器官中的生物利用度。类似的研究证明了白桦脂酸发挥其抗肿瘤特性的生物利用度 (Godugu 等人,2014)。从我们的研究中获得的数据表明,开发针对 SARS-CoV-2 刺突蛋白的三萜类药物分子是可能的。来自印度醉茄凝固素的凝固素在以刺突蛋白为目标的 AAR 下记录了较低的 BE。对结构相似的三萜和类固醇,即类固醇内酯,类固醇皂苷,类固醇糖苷生物碱,三萜糖苷,三萜皂苷和三萜甾醇,也进行了类似的观察。
摘要 在不久的将来,随着公路运输电气化的发展,电动汽车电池废弃物将迅速增加。为了应对这一挑战,将废旧电动汽车电池重新用于二次利用已引起电池相关利益相关者的更多关注,例如制造商、回收商、政策制定者等。因此,本论文的目的是回顾公司在重新利用电动汽车电池时可能面临的当前挑战。通过查阅文献和采访主要利益相关者的方法来收集相关信息。本论文的主要发现表明,重新利用电动汽车电池最常见的挑战是技术方面、供应不稳定、运输模糊性、利润不确定性以及来自其他循环战略的竞争。应对这些挑战的一个潜在解决方案是电池价值链中利益相关者之间的密切合作,通过确保在需要时提供信息来减轻不确定性。此外,本文还讨论了新电池监管提案在促进电动汽车电池重新利用和塑造二次电池市场方面的作用。
摘要:在拟南芥中,含环的E3泛素连接酶高表达的高响应基因1(HOS1)是冷信号传导的主要调节剂。在这项研究中,进行了第一个外显子中HOS1基因的CRISPR/CAS9介导的靶向诱变。DNA测序表明,由HOS1的基因组编辑引入的固定插入导致出现过早的停止密码子,从而破坏了开放的阅读框架。将获得的HOS1 CAS9突变植物与SALK T-DNA插入突变体(HOS1-3线)进行了比较,就其对非生物胁迫的耐受性,二级代谢产物的积累和参与这些过程的基因表达水平的积累而言。在暴露于冷应激后,在HOS1-3和HOS1 Cas9植物中都观察到了冷响应基因的耐受性和表达。HOS1突变会导致转化细胞中植物甲状腺素合成的变化。葡萄糖醇(GSL)的含量被1.5次下调,而转基因植物中氟乙醇糖苷的上调为1.2至4.2倍。还改变了拟南芥中次级代谢的相应MYB和BHLH转录因子的转录物丰度。我们的数据表明,HOS1调节的下游信号传导与植物甲壳虫生物合成之间存在关系。
在本文中,将为使用电动汽车和光伏面板的智能房屋提供电源管理算法。结果将分别提供权力管理,消费者的电力成本以及消费者的可能性。其他研究重点是以下。在[1]中,根据预测的PV输出和电力消耗确定了电动汽车充电的最佳时间表。在[2]中,确定了从电网的PHEV,电池和进口功率之间的优先顺序,并将进口电网能量和PEV充电成本的总成本降至最低。在[3]中,确定了带有光伏(PV)面板,电池,PHEV,热载荷和电气负载的智能家居中的最佳电源管理[3]。在[4]中,支持网格并允许房屋的最佳操作(具有智能设备,PV,存储和电动汽车),因此总电源成本最低。在[5]中进行了使用热量和电力存储的社区储能的优化。在[6]中,确定了具有PHEV能量存储和PV阵列的智能房屋的随机能源管理,导致电动汽车的电力成本较低。电动汽车与PV之间的相互作用。在[8]中,对于具有供暖,通风和空调负荷的可持续智能房屋而言,可以将能源成本和热不适成本的总和最小化。在[10]中,为带电动汽车的商业系统中的峰值负载管理开发了一种算法。在[9]中,用于直接当前环境的无线PV驱动家庭能源管理系统的设计和实施允许远程监视电器的能源消耗和功率质量质量。在[11]中,研究了一种基于混合光伏电池和V2G的智能房屋的能源管理系统。在[12]杂交