LVDT(线性可变差动变压器)是一种机电设备,其产生的电输出与单独的可移动磁芯的位移成比例。它由三个线圈组成,其中一个是变压器的初级线圈。另外两个线圈通常关于初级线圈对称,在正常运行时以相反方向串联连接以形成变压器次级线圈。当可移动变压器磁芯相对于两个次级绕组居中时,它们将具有相同幅度的感应输出电压,但极性或相位将相反。因此,次级线圈的净输出电压将为零。这个位置通常称为电气零位。当磁芯从零位移位时,一个次级线圈的输出会增加,而另一个线圈的输出会减少,从而产生与磁芯位移相关的非零差动输出电压。当磁芯从零位的一侧移动到另一侧时,该输出电压的相位会改变 180°。
同步机或旋转变压器是一种用于测量旋转角度的旋转电变压器。这些设备可以描述为具有初级和次级线圈的普通变压器。初级线圈是通常被激励的转子,次级线圈是定子。同步变压器的初级绕组固定在转子上,由正弦电流激励,该电流通过电磁感应使电流在定子上彼此成 120 度固定的三个星形连接的次级绕组中流动。测量次级电流的相对大小并用于确定转子相对于定子的角度,或者可以使用电流直接驱动与同步机同步旋转的电动机。在后一种情况下,整个设备也称为自同步器。同步机激励到转子的输出电压由以下方程式描述:
尼古拉·特斯拉设想了一个未来,即电力(以及其他信号)将利用共振现象进行无线传输。随着特斯拉线圈的发明,这无疑是他最著名的创新,他几乎实现了这一抱负,因为这是第一个能够无线传输能量的系统。由于特斯拉线圈对人类健康和其他电气设备构成一些危害,该项目被迫停止。因此,特斯拉线圈几乎没有实际应用;然而,它的概念和原理已被融入到手机、智能手表和电动牙刷等小型设备中,以便在电源和负载之间没有物理连接的情况下进行充电。将电力从电源传输到负载而无需两者之间进行物理连接的概念很有趣,尤其是考虑到需要定期充电的便携式设备数量庞大。此外,这种非接触式充电解决方案更可靠,因为它避免了灰尘和湿气的侵入,并且是医疗器械更卫生的解决方案。1 因此,今天正在对 WPT 进行大量研究。 WPT 可分为两个子类别:远场传输和近场传输。远场传输也称为辐射型,可实现长达几米的传输距离,但效率较低。尽管传输距离有限,但近场传输方法(也称为非辐射型)由于效率更高而取得了显着进步。2 例如,变压器使用近场 WPT 技术,因为它利用磁感应原理将能量从初级线圈移动到次级线圈,而无需直接电连接。这些技术已应用于生物医学植入物、消费电子产品和电动汽车 (EV) 充电。3
摘要:该项目为电动汽车(EV)提供了动态的无线充电系统,将Arduino Uno MicroController作为主要控制器。该系统具有嵌入在车道基础设施中的发射器(TX)线圈,并安装在车辆单元中的接收器(RX)线圈,在运动中可以连续充电。通过电磁诱导将能量从TX线圈无线传递到RX线圈。Arduino Uno微控制器充当中央控制单元,管理电力传输,监视充电状态和调节电压水平。集成的物联网(IoT)传感器可实时数据收集有关充电参数和电池健康,提高效率和安全性。该系统的效率水平达到67%,同时提供安全性,可靠性,较低的维护和较长的产品寿命。关键字:无线电源传输;电动汽车;电感动力传递;电池充电等I.引言世界遭受了许多没有电力的问题。在日常生命中,电力在许多应用中很重要,例如移动,笔记本电脑,相机,传感器,仿生植入物,卫星和油平台。在1891年,尼古拉·特斯拉(Nikola Tesla)提出了无线功率传输的想法,他展示了第一个用于照明的无线电源传输系统[1]。有时在小电源插座上连接太多电线会变得不方便和危险。托马斯·帕克(Thomas Parker)在1884年实际实施的第一辆电动汽车。在主要源和二级负载之间有一个较大的空气间隙。直到1859年可充电电池都无法用于储存电力,法国物理学家加斯顿工厂发明了铅酸电池并减少了缺点。电动汽车在许多国家 /地区更受欢迎,电动汽车尺寸很小,例如公共汽车,汽车大,两轮车,电动自行车很小。电动汽车与普通车辆相同,但是电动汽车用于推进目的中,用于电动机电池的电源[1]。与常规的铅酸电池相比,可用的新型可充电电池可用,因此可以使用较小的电池,而储能容量也更高,并且重量也较小。充电过程对于插入电动汽车的用户来说是笨重的,因为要为电池充电,需要从车辆直接连接的充电器,或者有时电池已卸下用于充电目的。通过利用电感功率传输技术,简化了困难的充电过程[1]。电感功率传递(IPT)方法是设计是通过从静态发射器到一个或多个可移动的次级接收器来无线传递电源[1] - [7]。根据电源要求,电源是单相或三个阶段。WPT系统通常由电源,发射器(主要线圈),接收器(次级线圈),微控制器,电池,传感器,匹配电路组成[8]。取决于线圈IPT系统的磁性结构是分布的或集结的拓扑结构。AC电流是通过电源以非常低的频率在发射器线圈中产生的。通过磁场单主要线圈和多个二级线圈耦合。主要线圈中的恒定频率电流正在为WPT创建一个强大而可控的磁场。电力电子技术的进步已经发现了许多基于IPT系统的新应用,例如用于专业仪器的无线电源,在大空气间隙上为电动汽车的无线电池充电,材料处理这些是IPT系统的高功率应用[1] - [7]。其他示例包括医疗植入物,手机,照明这些是IPT系统的低功率应用[1] - [7]。IPT系统的相互耦合通常为一周。接收器线圈从发射器线圈中电离,并沿着长发射器轨道移动。IPT系统的优点在下面列出,[1] - [7],[10],