在锂负极上形成疏锂无机固体电解质界面 (SEI) 并在正极上形成正极电解质界面 (CEI) 对高压锂金属电池是有益的。然而,在大多数液体电解质中,有机溶剂的分解不可避免地会在 SEI 和 CEI 中形成有机成分。此外,有机溶剂由于其高挥发性和易燃性,通常会带来很大的安全风险。本文报道了一种基于低熔点碱性全氟磺酰亚胺盐的无有机溶剂共晶电解质。锂负极表面的独特阴离子还原产生了一种无机的、富含 LiF 的 SEI 膜,该膜具有很强的抑制锂枝晶的能力,这一点可以从 0.5 mA cm −2 和 1.0 mAh cm −2 时 99.4% 的高锂电镀/剥离 CE 以及 80°C 下全 LiNi 0.8 Co 0.15 Al 0.05 O 2 (2.0 mAh cm −2 ) || Li (20 μ m) 电池的 200 次循环寿命看出。所提出的共晶电解质有望用于超安全和高能锂金属电池。
此外,当 TMO 充电至更高电压时,晶格氧可以参与阴离子氧化还原以补偿电荷。[15,16] 因此,氧化还原反应会在首次充电时贡献额外的容量。由于晶格结构内的氧损失,相关容量在接下来的循环中通常可逆性要低得多。[17-19] 此外,过渡金属离子可以在晶格氧氧化还原反应过程中迁移到钠离子层,导致层状 TMO 的结构变形。[20,21] 因此,高能量密度 SIB 正极设计需要了解层状 TMO 中的氧阴离子氧化还原活性,以更好地设计正极材料,提高氧化还原活性的可逆性,从而稳定循环性能。层状钠 TMO 的晶格氧氧化还原活性已通过多种原位或非原位技术进行了表征,例如拉曼光谱、X 射线光电子光谱和 X 射线吸收光谱。[22 – 24] 结果通常揭示有关充电或放电时表面氧局部电子态变化的信息。[18,25,26] 此外,了解本体(晶格)氧氧化还原活性对于解释相关的晶格结构变化和电化学过程的可逆性至关重要。
结构电池是指既能储存电能又能承受机械载荷的多功能设备。在这种情况下,碳纤维成为一种引人注目的材料选择,它既能储存能量,又能为电池提供刚度和强度,兼具双重用途。先前的研究已经证明了结构电池电解液中金属锂的功能性正极的概念验证。这里展示了一种全碳纤维基结构电池,利用原始碳纤维作为负极,磷酸铁锂 (LFP) 涂层碳纤维作为正极,并使用薄纤维素隔膜。所有组件都嵌入结构电池电解液中并固化以提供电池的刚度。使用薄隔膜可以提高结构电池的能量密度。结构电池复合材料的能量密度为 30 Wh kg − 1,循环稳定性高达 1000 次循环,库仑效率约为 100%。值得注意的是,在与纤维方向平行测试时,全纤维结构电池的弹性模量超过 76 GPa - 这是迄今为止文献中报道的最高值。结构电池在替代电动汽车结构部件的同时减少传统电池数量方面具有直接意义。因此,为未来的电动汽车节省了重量。
电池技术不断进步,以降低成本提高能量密度、稳定性和安全性。如今,钴/镍基金属氧化物(如 LiCoO 2 、LiNi x Co y Mn z O 2 和 LiNi 0.53 Co 0.3 Al 0.17 O 2 )占据了商用锂纽扣电池正极材料的主导地位。1 然而,为了降低成本并实现更好的性能,2 研究人员继续寻找潜在的替代电极。层状过渡金属二硫属化物(MX 2 ;M = 过渡金属,X = S、Se、Te)为在正极中插入主体物质提供了另一个有希望的方向。自从 Whittingham 于 1976 年报道了二硫化钛 (TiS 2 ) 在碱金属中的动力学有利的插入反应以来,人们对其进行了广泛的研究。3 由于其良好的电导率、4 比 LiCoO 2 更高的能量密度和快速的循环速度,4 TiS 2 现在被认为是 LIBs 和超越锂离子(如 Na、K 和 Mg)在高功率系统中应用的有力竞争者。5 – 7 此外,TiS 2 为全固态电池的金属锂阳极结合提供了可能性,并可作为锂硫电池中锂多硫化物的吸收剂,以提高电池性能。8
• 电池不含金属元素。• 基础成分是活性炭和石墨。• 水基电解液消除了电池燃烧的任何风险。• 任何机械损坏都不会导致电池单元着火。• 电池可以放电至 0 伏,而不会产生任何负面影响。• 正极和负极可以短路,不会造成任何后果• Sorbsys 不含钴及其任何化合物。• 溴和锌离子处于盐溶液状态,结合在安全化合物中,位于孔隙内。• 不含重金属。
北京石墨烯技术研究院有限公司,中国航发北京航空材料研究院,北京 100095,中国 * 电子邮件:shaojiuyan@126.com 收稿日期:2020 年 4 月 25 日 / 接受日期:2020 年 6 月 17 日/发表日期:2020 年 8 月 10 日 LiCoO 2 正极在高压操作下会发生严重的副反应和快速的容量衰减。在本研究中,通过小尺寸石墨烯纳米片对 LiCoO 2 进行部分涂覆,以实验研究石墨烯改性机理在 4.5V 截止电压下改善 LiCoO 2 正极电化学性能方面。与原始 LiCoO 2 相比,G-LCO 在 2.5 和 4.5 V vs. Li + /Li 之间表现出更好的循环稳定性和倍率能力。进一步研究表明,部分涂覆石墨烯纳米片可以有效抑制电池阻抗的增加并缓解阴极电解质界面(CEI)的生长,从而获得出色的电化学性能。这项研究为提高高截止电压下 LiCoO 2 的循环稳定性和倍率性能提供了新的见解。关键词:LiCoO 2 ,部分涂层,石墨烯纳米片,CEI 层,高电压 1. 介绍
全固态电池是提高电池性能和安全性的有前途的技术,它具有固体锂离子导电电解质(SE)。全固态电池可以实现锂金属负极,显著提高可实现的体积和重量能量密度。[10] 然而,全固态电池仍然面临一些限制。其中包括稳定性问题、众多固-固界面处的高电荷转移阻力、SE 的离子电导率不足以及正极设计未优化。[11,12]