鸣谢 下面列出的插图由指定来源提供。非常感谢使用这些插图的许可。复制本出版物中的插图和其他材料必须先获得来源方的许可。 图 4-7,霍曼传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 4-8,快速传输,Damon,Thomas D. (2001) 太空简介:太空飞行科学,第三版。Krieger Publishing Company,Malabar,FL,http://www.krieger-publishing.com/。 图 7-8,GPS 标称星座,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html。图 7-9,GPS 导航解决方案,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-10,精度几何稀释,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-11,GPS 主控和监控站网络,全球定位系统概述网页,http://www.utexas.edu/depts/grg/gcraft/notes/gps/gps.html 。图 7-12,电磁波谱,什么是遥感?网页,http://ls7pm3.gsfc.nasa.gov/mainpage.html 。图 7-13,制作彩色图像,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/oahu/rem_sens_ex/rsex.spectral.1.html 。图 7-14,入射角,遥感简介网页,http://satftp.soest.hawaii.edu/space/hawaii/vfts/kilauea/radar_ex/intro.html 。图 7-15,Landsat,Landsat 信息网页,http://www.exploratorium.edu/learning_studio/landsat/landsat.html 。图 7-16,AN/SMQ-11 接收终端,DMSP AN/SMQ-11 船载接收终端网页,http://www.laafb.af.mil/SMC/CI/overview/dmsp35.html 。图 7-17,GOES,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-18,GOES 定位,NOAA 的地球静止和极地轨道气象卫星网页,http://psbsgi1.nesdis.noaa.gov:8080/EBB/ml/genlsatl.html。图 7-19,GOES 成像仪、探测器图片,http://www.nnic.noaa.gov/SOCC/gifs/sndr.gif。
约翰·M·格伦斯菲尔德是一名科学家和前宇航员,在载人太空探索、空间科学任务和国家空间政策方面具有丰富的领导经验。他曾担任美国宇航局宇航员、科学副局长和华盛顿特区美国宇航局总部首席科学家。作为副局长,他的职责包括每年 70 亿美元的地球科学、天体物理学、行星科学、太阳物理学、詹姆斯·韦伯太空望远镜和 NOAA 气象卫星计划。此前,他曾担任巴尔的摩空间望远镜科学研究所副主任,管理哈勃太空望远镜和即将推出的詹姆斯·韦伯太空望远镜的科学项目。格伦斯菲尔德的科学研究领域是行星科学和寻找地球以外的生命。他对地球和气候科学以及应对气候变化的策略有着深厚的了解。格伦斯菲尔德也是一名狂热的探险家,喜欢登山、骑自行车、航海和驾驶小型飞机。
简介 自 1978 年唐纳德·J·凯斯勒和伯顿·库尔帕莱斯发表论文《人造卫星的碰撞频率:碎片带的形成》以来,太空垃圾一直是太空参与者关注的重要问题。尽管迄今为止在碎片清除方面采取的行动很少,但该论文引发了数十年的研究,这些研究描述了外层空间碎片的数量、类型和轨道,以及制定了世界各地认可的自愿碎片减缓标准。当今现有的大部分太空垃圾都是推进剂爆炸或蓄意破坏行为的结果。已知最大的碎片产生事件是 2007 年中国的反卫星 (ASAT) 试验,其中 SC-19 动能拦截弹故意摧毁了一颗中国气象卫星。1 为了提供关于太空垃圾寿命的参考点,目前在轨道上运行的最古老的碎片是美国先锋 1 号卫星。先锋 1 号于 1958 年发射升空,进入中地球轨道 (MEO),并将在该轨道上停留至少 200 年,直到自然衰减回地球大气层或在此之前被故意脱离轨道。2
实现空间NWP能力的主要障碍是缺乏近实时的中间大气状态测量来同化。在中层中唯一可用的气象观测来源是国防气象卫星计划(DMSP)特殊传感器微波成像仪/声音器(SSMIS)仪器的上部空气响料(UAS)通道提供的。 迄今为止,此数据已经未被充分利用,因为:1)典型的全局NWP模型不会跨越所需的垂直范围(表面至100 km),因此不包括中层; 2)在数据同化系统中使用的快速辐射转移(RT)模型缺乏对Zeeman效应对氧气分子与高于40 km高度的微波磁场范围内的氧气相互作用的明确处理。 社区辐射转移模型(CRTM)的版本2已实施了UAS通道所需的Zeeman分拆光谱计算。 在此海报中,我们评估了通过使用一致的剑术温度概况将辐射与CRTM计算进行比较,评估了UAS(UPP-UAS)通道新开发的SSMIS统一统一前处理器的实用性。 我们还展示了使用海军全球环境模型(NAVGEM)的示例UAS同化分析。在中层中唯一可用的气象观测来源是国防气象卫星计划(DMSP)特殊传感器微波成像仪/声音器(SSMIS)仪器的上部空气响料(UAS)通道提供的。迄今为止,此数据已经未被充分利用,因为:1)典型的全局NWP模型不会跨越所需的垂直范围(表面至100 km),因此不包括中层; 2)在数据同化系统中使用的快速辐射转移(RT)模型缺乏对Zeeman效应对氧气分子与高于40 km高度的微波磁场范围内的氧气相互作用的明确处理。社区辐射转移模型(CRTM)的版本2已实施了UAS通道所需的Zeeman分拆光谱计算。在此海报中,我们评估了通过使用一致的剑术温度概况将辐射与CRTM计算进行比较,评估了UAS(UPP-UAS)通道新开发的SSMIS统一统一前处理器的实用性。我们还展示了使用海军全球环境模型(NAVGEM)的示例UAS同化分析。
– 奥地利航天局 (ASA)/奥地利。 – 中央机械制造研究院 (TsNIIMash)/俄罗斯联邦。 – 航空航天技术中心 (CTA)/巴西。 – 中国空间技术研究院 (CAST)/中国。 – 联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 通信研究实验室 (CRL)/日本。 – 丹麦空间研究所 (DSRI)/丹麦。 – 欧洲气象卫星利用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 联邦科学、技术和文化事务局 (FSST&CA)/比利时。 – 希腊国家空间委员会 (HNSC)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 加拿大工业部/通信研究中心 (CRC)/加拿大。 – 空间与航天科学研究所 (ISAS)/日本。 – 空间研究所 (IKI)/俄罗斯联邦。 – KFKI 粒子与核物理研究所 (KFKI)/匈牙利。 – MIKOMTEK:CSIR (CSIR)/南非共和国。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 美国国家海洋与大气管理局 (NOAA)/美国。 – 国家空间计划办公室 (NSPO)/台北。 – 瑞典空间公司 (SSC)/瑞典。 – 美国地质调查局 (USGS)/美国。
该报告是由世界气象组织(WMO)在联合国秘书长的指导下汇编的,以汇集了主要全球关键合作伙伴组织与气候科学相关的最新更新。与2024年联合国未来的峰会保持一致,该报告提供了气候科学状态以及最新天气,气候,水以及相关的环境和社会科学的最新信息。Contributing partners include: WMO, Met Office UK, the Official Children and Youth Constituency of the United Nations Framework Convention on Climate Change (YOUNGO), WMO Global Atmosphere Watch (GAW), WMO World Weather Research Programme (WWRP), World Climate Research Programme (WCRP), Global Carbon Project (GCP), United Nations Environment Programme (UNEP), European Centre for Medium-Range Weather Forecasts (ECMWF),联合国外在航天事务办公室(UNOOSA),欧洲的气象卫星剥削组织(EUMETSAT),国际电信联盟(ITU),联合国战斗荒漠化公约(UNCCD),国际科学委员会(ISC),联合国国际科学委员会(ISC),灾害风险减少的办公室(UNDRR),国际红十字会和红色十字架和红色CreSencecies corececies of Red Cross and Redcececiessies futruecorce and Ifcers and Redceciessecies ifc。
– 奥地利航天局 (ASA)/奥地利。 – 比利时科学政策办公室 (BELSPO)/比利时。 – 中央机械工业研究院 (TsNIIMash)/俄罗斯联邦。 – 中国卫星发射和跟踪控制总院、北京跟踪和通信技术研究所 (CLTC/BITTT)/中国。 – 中国科学院 (CAS)/中国。 – 中国空间技术研究院 (CAST)/中国。 – 英联邦科学与工业研究组织 (CSIRO)/澳大利亚。 – 丹麦国家空间中心 (DNSC)/丹麦。 – 航空航天科学和技术部 (DCTA)/巴西。 – 电子和电信研究所 (ETRI)/韩国。 – 欧洲气象卫星利用组织 (EUMETSAT)/欧洲。 – 欧洲通信卫星组织 (EUTELSAT)/欧洲。 – 地理信息和空间技术发展机构 (GISTDA)/泰国。 – 希腊国家空间委员会 (HNSC)/希腊。 – 希腊航天局 (HSA)/希腊。 – 印度空间研究组织 (ISRO)/印度。 – 空间研究所 (IKI)/俄罗斯联邦。 – 韩国航空宇宙研究院 (KARI)/韩国。 – 通信部 (MOC)/以色列。 – 穆罕默德·本·拉希德航天中心 (MBRSC)/阿拉伯联合酋长国。 – 国家信息和通信技术研究所 (NICT)/日本。 – 国家海洋和大气管理局 (NOAA)/美国。 – 哈萨克斯坦共和国国家空间局 (NSARK)/哈萨克斯坦。 – 国家空间或
本文档旨在描述 Walt Meier 等人开发的算法。从 2015 年开始,国家冰雪数据中心 (NSIDC) 的 Florence Fetterer 向国家环境信息中心提交更新。该算法用于创建海冰浓度气候数据记录 (CDR),使用美国国防部气象卫星计划 (DMSP) 平台上的特殊传感器微波/成像仪 (SSM/I) 和特殊传感器微波成像仪和探测器 (SSMIS) 传感器。海冰浓度 CDR 的目标是提供一致、可靠且有据可查的产品,符合环境卫星气候数据记录 (NAS, 2004) 中定义的 CDR 指南。实际算法在本文档附带的计算机程序(代码)中定义;因此,本文旨在从科学角度和软件工程角度提供理解该算法的指南,以协助评估代码。美国宇航局戈达德太空飞行中心 (GSFC) 生成的海冰浓度辅助场也包括在内,因为它们采用了戈达德科学家的手动校正,并延长了时间序列以涵盖 Nimbus-7 扫描多通道微波辐射计 (SMMR) 时代 (1978-1987)。
2006 年,美国总统发布的《美国国家太空政策》指出,美国政府应“培养太空专业人员”。作为这项努力不可或缺的一部分,AU-18《太空入门》为联合作战人员提供了非机密资源,帮助他们了解太空部队的能力、组织和行动。从历史上看,美国一直是太空探索和利用领域的世界领导者。2001 年,美国国家安全太空管理和组织评估委员会一致得出结论:“美国及其盟友和朋友的安全和福祉取决于国家在太空行动的能力。”1 最近的冲突和世界事件不断证明太空资产和能力对我们安全职能的重要性。我们的导航卫星为飞机、地面部队、舰船和指挥中心提供即时精确的位置和目标信息。这些卫星还为全球提供精确的定时源,这对于维护基础设施至关重要,包括金融机构、电网、手机,甚至我们的有线和卫星电视。通信卫星为国家安全基础设施的各个层面提供全球连接。气象卫星可以近乎实时地向战区部队报告气象数据,比以往更好。预警卫星可以探测和报告导弹发射,并充当战略
旨在建立我们星球的数字复制品的欧盟目的地(Destine)倡议已经进入了一个新阶段。ECMWF是Destine的三个主要参与者之一,以及欧洲的气象卫星剥削组织(Eumetsat)和欧洲航天局(ESA)。我们提供的前两个高优先数字双胞胎和Digital Twin Engine是Destine的核心。目的是实现可在决策中使用的气候发展和极端天气相关的事件的高度准确表示,并具有前所未有的互动性水平,并且有可能运行定制模拟来测试“何时”场景。为此,我们涉及到欧洲的90家机构,我们的成员和合作国家在当地人中扮演的领导角色。上个月,欧盟委员会激活了初始的命运系统。在第二阶段,我们的前两个数字双胞胎,ESA的核心服务平台和Eumetsat的数据湖正在逐渐运转。Destine有望通过与广泛的用户的应用程序共同设计扩展其操作并开发更多组件,从而不断发展。到2030年,它应该能够制作出可用的地球的完整交互式数字复制品。
