太空中的生物反应器可应用于从基础科学到微生物工厂的各个领域。在微重力环境下监测生物反应器在流体、通气、传感器尺寸、样品量以及培养基和培养物的扰动方面都存在挑战。我们介绍了一个小型生物反应器开发案例研究,以及一种监测酵母培养物溶解氧、pH 值和生物量的无创方法。针对系统容量 60 毫升和 10.5 毫升,测试了两种不同的生物反应器配置。对于这两种配置,光学传感器阵列 PreSens SFR vario 都会自动收集数据。使用直径为 7 毫米、固定在采样室底部的化学掺杂点监测培养物中的氧气和 pH 值。当点分别与氧分子和氢离子反应时,会发出 DO 和 pH 的荧光信号。使用以 605 nm 为中心的光反射率来感测生物量。光学阵列有三个光检测器,每个变量一个,它们返回的信号经过预校准和后校准。对于需要氧气和呼吸二氧化碳的异养培养,与光学阵列同轴的中空纤维过滤器可给细胞供氧并去除二氧化碳。这提供了足以维持稳定状态条件下有氧呼吸的氧气水平。比较并讨论了两个生物反应器中酵母代谢的时间序列。生物反应器配置可以很容易地修改为自养培养,从而增强二氧化碳并去除氧气,这是光合藻类培养所必需的。
脑心浸液琼脂、胰蛋白酶大豆肉汤、巯基乙酸盐肉汤和血琼脂。对于支原体检测,样品分别在胸膜肺炎样生物肉汤和琼脂(支原体培养和维持的选择性培养基)中培养和传代培养(10)。在开始和每次应激情况后进行物理化学测试,包括稳定剂含量(MgCl 2 )、气密性、外观、标签、pH 值和可提取量。测试时考虑外观、稠度、颜色、透明度和任何可见颗粒。检查标签的稳定性和管的气密性。通过络合滴定法测试 MgCl 2 含量,通过评估氢离子含量确定样品的 pH 值。最后,通过滴数估算每个小瓶的容量(8)。所有样品均在暴露于冻融循环和-20、2-8、22-25 和 35-37 ºC 的温度 2、4、7、10、14、21、30 和 60 天后检测效力(11):制备 HeLa 细胞(ATCC CCL-2)(12)后,稀释疫苗并加入微量滴定板(Nunc)。然后,将细胞悬液(2× 10 5 细胞/毫升)加入到板中。4-7 天后,观察细胞的细胞病变作用。疫苗的 CCID50 是通过采用 Spearman-Karber 方法估算每剂 50% 终点来确定的(13)。然后,重复测定三次几何平均滴度。根据 WHO 的要求,二价疫苗的滴度必须超过 10 6 CCID50/剂,这是最低保护滴度(14)。 VVM 的分类如下:0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
1。预期的用途检测和分离革兰氏阴性肠病原体,尤其是人类临床标本和其他标本中的志贺氏菌和沙门氏菌。革兰氏阴性肠病原体(尤其是志贺氏菌和沙门氏菌)的Shalmella shigella琼脂/XLD琼脂。沙门氏菌琼脂/XLD琼脂的功能是支持症状患者的诊断,表明革兰氏阴性肠病原体,尤其是Shigella属和沙门氏菌的病原体潜在感染。沙门氏菌是食物中毒的一些最常见的病因。这些微生物的致病性从一种血清变化到另一种血清,并且在同一亚种中可能会有所不同。一些血清造成了侵入性疾病,但也有一些造成自限性食物中毒的血清疾病。沙门氏菌肠subsp的最孤立的血清。肠道是S. enteritidis,S。Typhimurium,S。Virchow,S。Hadar或S. iftantis。Shigella属包括四种:S。dysenteriae,s。Flexneri,S。Boydii和S. Sonnei。所有物种都是强制性的病原体,并引起细菌痢疾。2。手术沙门氏菌琼脂的原理胆汁盐,孔雀石绿色和柠檬酸钠的存在抑制了除沙门氏菌和志贺氏菌以外的革兰氏阳性微生物和肠杆菌的生长。由于添加乳糖,肠杆菌的分化是可能的。乳糖发酵细菌会产生酸并形成红色菌落,这是由于中性红色的pH指示剂。相反,乳糖非发酵微生物形成无色菌落。柠檬酸铁是硫化氢产生的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合,形成H 2 S,与柠檬酸铵反应。这种反应导致形成沉淀物,可见在细菌菌落中心的黑点。XLD琼脂酵母提取物是培养基中养分的来源。脱氧胆酸钠的存在抑制了革兰氏阳性细菌的生长。由于三个指示系统,细菌的分化是可能的: - 乳糖,木糖和蔗糖与苯酚红(这是pH指示剂) - - 盐酸l-赖氨酸盐和苯酚红色, - 硫代硫酸钠和柠檬酸铁硫酸盐。木糖的发酵降低了培养基的pH值,并使其从红色变为黄色。包括沙门氏菌在内的大多数肠道病原体能够发酵木糖,从而导致培养基的酸化。由于志贺氏菌的细菌是乳糖的非发酵,因此不会产生酸,因此会形成红色菌落。赖氨酸允许将沙门氏菌细菌与其他非致病细菌区分开。一旦木糖耗尽,沙门氏菌细菌在脱羧过程中利用L-赖氨酸,这将培养基的pH水平改变为碱。为防止赖氨酸阳性大肠菌群,乳糖和蔗糖的类似pH水平的类似回归,以产生多余的酸。氯化钠保持渗透平衡。柠檬酸铵是硫化氢生产的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合形成H 2 s,与柠檬酸铁反应形成沉淀物,可见在细菌菌落中的黑色中心。产生H 2 S的非致病细菌不脱羧L-赖氨酸。因此,它们产生的酸反应阻止了菌落的变化。
首字母缩略词和缩写 Σ 总和 µg 微克 AVS 酸性挥发性硫化物 BHC 六氯苯 BMP 最佳管理实践 BOD 生化需氧量 CAM 加州评估手册 COC 监管链 COD 化学需氧量 COP 加州海洋计划 CTR 加州有毒物质规则 DDD 二氯二苯二氯乙烷 DDE 二氯二苯二氯乙烯 DDT 二氯二苯三氯乙烷 DO 溶解氧 DOC 溶解有机碳 ID 标识 IDW 反距离加权 LARWQCB 洛杉矶区域水控制委员会 MDL 方法检测限 MdRH 马里纳德尔雷港 MPN 最可能数 NDMA N-亚硝基二甲胺 NDPA N-亚硝基二正丙胺 NTU 散射浊度单位 PAH 多环芳烃 PCB 多氯联苯 PCE 四氯乙烯 pH 氢离子浓度 Q-PCR 定量聚合酶链反应 QA 质量保证 QC 质量控制 SAP 采样和分析计划 SEM 同时萃取金属 SM 标准方法 STLC 可溶性阈值极限浓度 SVOC 半挥发性有机碳 SWRCB 州水资源控制委员会 TCLP 毒性特性 浸出程序 TDS 总溶解固体 TKN 总凯氏氮 TMDL 总最大日负荷 TOC 总有机碳 TPH 总石油烃 TSS 总悬浮固体 TTLC 总阈值极限浓度 USEPA 美国环境保护署 VOC 挥发性有机碳 WET 废物提取测试 WQO 水质目标
2023年10月2日收到2023年11月23日在线发布于2023年12月8日,抽象意识是具有故意性的能力,这是一个以各种时间尺度运行的过程。为了有意识,人造设备必须表达能够解决内在性问题的功能,在这种功能中,可以在语言之前将“含义”视为一种非上下文动态,从而导致理解“含义”。这暗示着取代建立意识人工智能(AI)的意识问题。开发模型仿真并探索机器如何理解意义的基本机制对于最小意识AI的发展至关重要。已由Alemdar及其同事[对全体脑理论的新见解:对主动意识的影响。多尺度神经科学杂志2(2023),159-168],它是通过理解从负面动作中得出的不确定性来推进人工系统的框架,以创建有意的系统,需要通过信息渠道进行量子热波动,而不是识别(请参见,自发的)感官渠道。改善有意识AI中的通信需要软件和硬件实现。该软件可以通过多尺度时间处理的脑机界面来开发,而硬件实现可以通过在人工“ wetwire”质子细丝中使用偶极样氢离子(Proton)相互作用来创建能量来完成。可以通过嵌入现实世界设备中的质子“ wetwire”细丝中实现的回忆录来实现机器的理解。本报告为该过程提供了一个蓝图,但不涵盖算法或工程方面,在最低意识的AI可以开始运行之前,需要对此进行概念化。关键词:基于十二碳图的脑机界面,最少意识的AI,故意性,机器理解,人工体验性,质子“湿软件”,Memristors,流体动力对,偶极子样质子共振,能量流,能量流,波动,波动。
摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比
在范围内高度国际化的书涵盖了许多国家,并深入探讨了有关气候变化适应的研究和项目。它是寻求促进气候变化适应工作的政府和非政府机构的宝贵资源。本书通过提供该主题的详细概述来填补市场利基市场,使其成为气候变化管理(CCM)系列的一部分。本书着重于可以帮助读者应对气候变化带来的社会,经济和政治挑战的方法,方法和工具。它的目的是通过收集在“第二届世界气候变化适应性研讨会上提出的论文”来加快气候变化适应领域的发展。这本跨学科的书涵盖了气候变化适应领域的各个关键领域,强调了实施气候变化适应的综合方法。文本强调了解决气候变化的重要性,正如政府间气候变化小组(IPCC)发布的第五次评估报告(AR5)和当事方(COP 25)建议的第五次评估报告(AR5)所强调。这本书确实是全面的,不仅涵盖了建模和预测所提供的知识,还涵盖了气候变化的社会,经济和政治含义。已经发表了几十年来,已经发表了关于第四纪晚期的古海洋学和古气候学的研究。学者,例如Cline,Hays,Crane,Crowell,Frakes,Dansgaard,Johnsen和Clausen,为这一研究领域做出了贡献。洛克伍德(Lockwood)长期气候变化 * W.F.的研究研究表明,正如1956年Ewing和Donn首次提出的地球轨道的变化可能是造成冰期的原因。也考虑了其他因素,例如太阳辐射的变化(Hoyle和Lyttleton,1950年)和大气灰尘含量(Davitaya,1969年)。对海平面和冰期后隆起的研究为冰河时代对全球气候的影响提供了证据。例如,Farrand(1962)和Farrell和Clark(1976)的研究表明,海平面的变化与冰川周期密切相关。气候建模已变得越来越复杂,诸如盖茨(Gates)(1976)的冰原气候模型等研究为这种复杂现象提供了新的见解。埃迪(Eddy,1982)探索了太阳变异性在驱动气候变化中的作用,对极地海洋的研究(Crane,1981)揭示了大气与海洋之间的相互作用。还研究了冰川对全球生态系统的影响,包括格罗夫和沃伦(Grove and Warren)(1968年)在非洲关于第四纪地面和气候的研究,为这一领域提供了宝贵的见解。总的来说,这篇研究论文的集合强调了冰河时代的复杂性及其与地球轨道,太阳辐射和大气条件的变化的关系。此参考清单包括有关气候变化和可变性的各种研究和论文。出版了几十年,这些作品探讨了气候科学的不同方面,包括冰河时代的原因,太阳可变性和天气模式之间的关系以及人类活动对环境的影响。气候变化。此列表中提到的一些关键作者包括: * G. Kukla,他写了有关冰间术的轨道签名 * H.H.兰姆(Lamb)是一位著名的气候学家,他发表了两卷有关气候,过去和未来的卷。ruddiman在氧气同位素和古磁性地层上进行的研究。该清单还包括与气候变化相关的各种主题,例如: *风险的原因 * * *的环境 *改变地质时标。总的来说,此参考列表提供了对气候变化和可变性的科学理解的全面概述,突出了该领域的主要作者,研究和发现。巴黎:联合国教科文组织,pp。277–281。Google Scholar Taylor,B。L.,T。Gal-Chen和S. H. Schneider,1980。火山喷发和长期温度记录,q。jour。皇家陨石。Soc。106,175–199。Google Scholar Turekian,K。K.(ed。),1971年。晚期的冰川冰期年龄。纽黑文:耶鲁大学出版社。Google Scholar Vernekar,A。D.,1972。远程辐射的长期全球变化,陨石。Monogr。12,编号34。冰川学5,145–158。波士顿;美国气象学会。Google Scholar Weertman,J。,1964年。在非平衡冰盖上的生长速度或收缩率,Jour。Google Scholar Weertman,J。,1966年。基底水层对冰盖尺寸的影响,jour。冰川学6,191–207。Google Scholar Weertman,J。,1976。Milankovitch太阳辐射在冰河时代冰盖尺寸,自然261,17-20。Google Scholar Weyer,E。M.,1978。杆运动和海平面,自然273,18-21。Google Scholar Weyl,P。K.,1968。海洋在气候变化的原因中的作用在气候变化中。Monogr。8,J。Mitchell(编辑)。波士顿:美国气象学会,pp。37–62。Google Scholar Williams,J。,1975。雪地对大气循环的影响及其在气候变化中的作用,Jour。应用。陨石。14,137–152。Google Scholar Wilson,A。T.,1964年。冰的起源:冰架理论,自然201,147-149。Google Scholar Wilson,A。T.,1966年。太阳能对南极区域的变化作为触发,自然210,477–478。Google Scholar Wilson,A。T.,1970年。南极冰潮,南极期间。美国5,155–156。Google Scholar Woerkom,A。J. Van,1953年。气候变化的天文学理论,在气候变化中,H。Shapley(ed。)。剑桥,马萨诸塞州:哈佛大学出版社,pp。147–157。Google Scholar Wollin,G.,1974。Goemagnetic变化和气候变化,Colloq。int。CNRS 219,273–286。Google Scholar Wollin,G.,D。B. Ericson和W. B. F. Ryan,1971年。磁强度和气候变化的变化,自然232,549–551。Google Scholar Wollin,G.,W。B. F. Ryan和D. B. Ericson,1978年。气候变化,地球轨道,地球和行星SCI的磁强度变化和波动。字母41,395–397。Google Scholar Wright,H。E.和D. G. Frey(编辑),1965年。美国第四纪。普林斯顿:普林斯顿大学出版社。今天,由于对气候如何影响我们的生活质量和环境的公众认识,人们对气候信息的需求不断增长。为了满足这一需求,气候学百科全书提供了对气候所有主要子场的全面覆盖,包括有关主要大陆地区气候的数据以及对气候过程和变化的已知原因的解释。酸雨已成为工业化国家的紧迫环境问题。虽然这个话题经常笼罩在政治言论和情感猜测中,但证据表明,在20世纪后期的几十年中,酸雨将继续越来越关注。要掌握酸雨的性质及其潜在的后果,必须了解酸度的概念以及大气过程如何通过降水影响酸性物质的沉积。酸度的特征是在水基溶液中存在游离氢离子(H+),以对数pH量表进行测量,其中7代表中性,降低值表明酸度增加,而增加值表示碱度。