发现具有最小毒性或对正常细胞副作用的新型生物相容性和可生物降解的聚合物制剂是微生物感染和癌症治疗的主要并发症。已经发现了用于聚(氧化乙烷)(PEO)或聚(乙二醇)(PEG)聚合物的各种化学,生物和药物功能。增强抗菌和抗癌活性,结合了金属或金属氧化物纳米颗粒(NP),例如银(Ag),氧化铜(CUO)和氧化锌(ZnO)NPS,在该半晶体和线性聚合物中可能是有效策略。更重要的是,PEO可以形成可以直接应用于身体部位的水凝胶,例如皮肤或粘膜进行局部治疗。PEO通过PEO增加口服吸收和抗癌活性来装饰抗癌药物的纳米载体。PEO聚合物对抗病毒药物作为有效递送系统的各种微型和纳米形式的各种微观成分表现出令人鼓舞的结果。根据最近的进展,讨论了这一微型综述,抗菌,抗病毒和抗肿瘤作为PEO及其衍生物的三种主要治疗应用。
氧化锌(ZnO)粉末已成为白色油漆色素和工业加工化学品的中流型。然而,20世纪中叶对ZnO产生了兴趣,这是由于对其独特和有前途的特性的认可,包括生产第一笔铜管金属,出于医疗目的的纯化ZnO的发展,甚至是早期炼金术士试图将基准金属转换为金。科学界和行业领导者都激发了这种新的兴趣。这些属性具有超出传统用途的不同应用的巨大潜力。Zno已成为下一代电子设备的前进者。对ZnO的研究在1990年和2010年经历了显着的峰值。在2010年,超过5,000个出版物包含标题,摘要或关键词中的ZnO。发生这种情况是因为ZnO具有广泛的特性,具体取决于掺杂,包括从金属到绝缘的电导率,高透明度,压电性,宽带间隙半导体特性,室温铁磁磁性以及明显的磁电磁和化学感应效应。由于这些属性,相关出版物的数量已大大增加。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
异质外延及其应用研究中心 (CRHEA) 是一个专门从事半导体材料外延的研究实验室,特别是宽带隙半导体,如 III 族氮化物材料 (GaN、AlN)、氧化锌 (ZnO)、碳化硅 (SiC) 及其在洁净室中的微纳米加工。CRHEA 还研究二维材料,如石墨烯、氮化硼和过渡金属二硫属化物以及超导 (NbN) 和新型铁电材料 (ScAlN、ZnMgO)。这些材料被加工成微电子、光电子、光子学、超表面和量子异质结构的设备。CRHEA 还开展纳米科学和晶体生长的基础研究。CRHEA 涉及的主要领域涉及能源转型、未来通信以及环境和健康。该实验室拥有九个分子束外延生长反应器和六个气相生长反应器。它还拥有用于材料结构表征的工具,包括最先进的透射电子显微镜 (TEM) (https://www.crhea.cnrs.fr/ACT-M/index.htm) 和用于微纳米制造的洁净室。CRHEA 拥有 70 名研究人员,其年度预算为 450 万欧元(不包括工资)。
摘要。从电缆绝缘到先进电子设备,介电材料在众多应用中都备受关注。设备小型化的新趋势使得对能够精确生产纳米级介电薄膜的需求不断增加。此外,通常还需要特殊的机械性能,例如在柔性有机电子领域。聚合物是此目的的首选材料。然而,通过湿化学方法生产具有低缺陷密度且不含残留溶剂等的精确纳米级薄膜极其困难。引发化学气相沉积 (iCVD) 是一种无溶剂聚合物薄膜沉积工艺,可用于生产具有纳米级控制的高质量介电薄膜,从而避免了这些问题。这项工作通过一些新的 iCVD 应用示例展示了 iCVD 工艺在电气应用领域的多功能性。例如,通过在柱状氧化锌 (ZnO:Fe) 气体传感结构上添加疏水性有机硅氧烷薄膜,乙醇到氢气的选择性发生了变化,并且在高湿度水平下的性能也得到了改善。因此,改进后的传感器可用于潮湿环境,尤其是用于呼吸测试,这可以通过尖端的非侵入性方法诊断某些疾病。
摘要:钙钛矿太阳能电池(PSC)由于性能的迅速提高而在科学界引起了极大的关注。无机钙钛矿设备的高性能和长期稳定性已被备受关注。这项研究介绍了通过建模使用无铅N - I-i-p甲基苯丁基溴化物(MASNBR 3)材料产生高效PSC的设备优化过程。我们已经彻底研究了吸收器和界面层对优化结构的影响。我们的方法利用石墨烯作为孔传输和吸收层之间的界面层。我们使用氧化锌(ZnO)/Al和3c - SIC作为吸收剂和电子传输层之间的界面层。优化过程涉及调整吸收层和界面层的厚度并最小化缺陷密度。我们提出的优化设备结构,ZnO/3C - SIC/MASNBR 3/Chaphene/Cuo/Au,表明理论功率转换效率为31.97%,填充因子为89.38%,当前密度为32.54 mA/cm 2,电压为1.112 V,量子为1.112 V,量子为94%。这项研究强调了Masnbr 3作为一种无毒的钙钛矿材料,可从可再生来源的应用中提供可持续能源。
甲基铵碘化锡( )钙钛矿纳米晶体由于其带隙窄、可见光吸收系数高、比铅基对应物( )更环保,引起了研究兴趣,并成为光伏领域的后起之秀。本文提出了一种以氧化锌(ZnO)和氧化铜(CuO)为电子传输介质(ETM)和空穴传输介质(HTM)的锡基钙钛矿太阳能电池,并使用太阳能电池电容模拟器(SCAPS)工具进行数值研究。在适当的参数下,初步模拟获得了短路电流密度(Jsc)为 27.56 / 、开路电压(Voc)为 0.82 、填充因子(FF)为 59.32 % 和功率转换效率(PCE)为 13.41 %。通过改变吸收层和电子传输层的厚度,观察到ZnO和ZnO的最佳厚度分别为0.6和0.3,相应的PCE分别为14.36%和13.42%。使用优化参数进行模拟后,记录到Jsc为29.71 /,Voc为0.83,FF为61.23%,PCE为15.10%。这些值优于未经优化获得的值,这意味着通过调整钙钛矿和电子传输层可以在一定程度上提高太阳能电池的性能,同时钙钛矿太阳能电池(PSC)是一种具有相当高效率的潜在环保太阳能电池。
随着对电子设备成本更低、性能更好、尺寸更小、可持续性更强的需求,微机电系统 (MEMS) 换能器成为受益于小型化的主要下一代技术候选之一 [1-3]。压电 MEMS 谐振器具有高品质因数和大机电耦合度,是射频 (RF) 系统中很有前途的产品 [4-8]。压电 MEMS 谐振器的主要材料是氮化铝 (AlN)、压电陶瓷 (PZT)、氧化锌 (ZnO) 和铌酸锂 (LN) [9-13]。近年来,掺杂 AlN 薄膜,尤其是氮化铝钪 (AlScN),因其能提高 d 33 和 d 31 压电系数而备受研究 [14]。基于AlN和AlScN薄膜的压电MEMS谐振器凭借单片集成度高、性能优越等特点,受到越来越多的关注。MEMS谐振器种类繁多,如表面声波(SAW)谐振器[15,16]、薄膜体声波谐振器(FBAR)[17-19]。但SAW器件与CMOS工艺不兼容,FBAR的频率主要取决于压电层厚度,因此很难在一个芯片上实现多个工作频率或宽频率可调性。另一方面,基于AlN和AlScN的轮廓模式谐振器(CMR)与CMOS工艺兼容[20-24]。同时,工作频率和谐振频率与CMOS工艺兼容,而基于CMR的器件的工作频率和谐振频率与CMOS工艺不兼容。
我将与电池安全有关的基于学术,动手,教学和基于共识的工作经验结合在一起。自2011年以来,在网格秤电池上工作,在桑迪亚国家实验室(Sandia National Labs)管理储能测试垫(ESTP)。- 使用铅酸,锂离子,锌 - 山加二氧化锌,锌 - 溴化物流量和钒 - 雷克斯流动型电池的电池系统上开发和应用网格量表实验方案。- 在2015年12月的电源杂志上撰写了“分析锂离子电网储能中的系统安全”。主持了一组研究人员,以帮助亚利桑那州公共服务(APS)评估2019年事件发生事件后防止未来电池火灾的方法,从而发表了一份技术报告:“网格尺度的能源存储危害分析和设计系统安全的目标” - 在与电池安全组相关的标准工作组上,包括UL,NFPA和IEEE以及IEEE。我目前主席IEEE P2686电池管理系统的工作组,用于存储应用。- 元教程对建筑物检查员,公用事业,州监管机构,消防员和许多其他人的电池 /储能安全性 - 开发,现在教授Sandia National Laboratories < / div>的中等和高危害电池安全培训课程