疟原虫引起的感染给世界上最贫穷的社区带来了巨大的负担。我们迫切需要具有新作用机制的突破性药物。作为一种经历快速生长和分裂的生物体,疟原虫恶性疟原虫高度依赖蛋白质合成,而蛋白质合成又需要氨酰基-tRNA 合成酶 (aaRS) 为 tRNA 充电相应的氨基酸。蛋白质翻译是寄生虫生命周期所有阶段所必需的;因此,aaRS 抑制剂具有全生命周期抗疟活性的潜力。本综述重点介绍了使用表型筛选、靶标验证和结构引导药物设计来识别有效的疟原虫特异性 aaRS 抑制剂的努力。最近的研究表明,aaRS 是一类 AMP 模拟核苷磺酰胺的易感靶标,这些靶标通过一种新颖的反应劫持机制靶向酶。这一发现开辟了生成不同 aaRS 的定制抑制剂的可能性,从而提供了新的药物线索。
细胞中每种蛋白质的数量仅与其基因转录率部分相关。对蛋白质合成水平的独立影响包括 mRNA 序列基序、氨酰基-tRNA 合成水平、延伸因子作用和蛋白质对降解的敏感性。我们在此报告,蛋白质的氨基酸组成也可以通过两种不同的方式影响其表达水平。动物体内氨基酸的营养分类反映了它们的稀缺性——必需氨基酸 (EAA) 依赖于饮食供应,非必需氨基酸 (NEAA) 来自内部生物合成,条件性必需氨基酸 (CEAA) 则来自两者。通过访问公共蛋白质组学数据集,我们证明蛋白质的 CEAA 序列组成与表达呈负相关——在快速细胞增殖过程中相关性增强——表明 CEAA 的可用性可以限制翻译。同样,具有最极端 EAA 组成的蛋白质通常丰度较低。后者的蛋白质参与味觉和觅食行为、氧化磷酸化和趋化因子功能等生物系统,因此将它们的表达与 EAA 可用性联系起来可能作为对营养不良的稳态反应。蛋白质组成也会影响人类的一般表型和疾病易感性:身材蛋白富含 CEAA,而超过 700 种癌症蛋白的精选数据集在 EAA 中的代表性明显不足。我们还表明,单个氨基酸可以影响所有生命界的蛋白质表达,这种影响似乎源于每种氨基酸不变的结构和 mRNA 编码特征。物种特异性环境生存途径富含蛋白质,单个氨基酸组成有利于更高的表达。这两种氨基酸驱动的蛋白质表达调控形式有望为系统生物学、进化研究、实验研究设计和公共卫生干预提供新的见解。
1 医学生物学作为一门科学,是生物学和遗传学史上的标志 2 细胞和人体的化学组成。生物分子中的化学键 3 生物聚合物、一般结构、脂质、多糖 4 蛋白质结构 5 蛋白质功能 6 原核细胞和真核细胞的结构 7 生物膜(结构、功能) 8 膜蛋白和膜转运 9 细胞器(概述、结构、功能) 10 细胞骨架系统 - 概述、中间丝 11 细胞骨架系统 - 微管、微丝 12 导致发现 DNA 作为遗传信息载体的实验 13 核酸结构 14 原核生物和真核生物基因组(特征和差异) 15 人类基因组的结构(组蛋白、核小体、染色质) 16 线粒体基因组 17 DNA 复制 18 原核生物和真核生物中 DNA 复制的比较 19 DNA 损伤的类型及其原因 20 DNA 修复机制(NER、BER、错配修复 21 DNA 双链断裂修复 22 染色体不稳定性和非整倍性 23 分子生物学的中心法则,原核和真核基因 24 RNA 分子的类型和转录的一般特征 25 原核生物的转录 26 真核生物的转录 27 真核生物的转录后修饰 28 RNA 编辑和逆转录 29 遗传密码 30 tRNA 和氨酰基-tRNA 合成酶,核糖体结构 31 翻译 32 翻译后修饰 33 蛋白质折叠和蛋白质降解,蛋白质分选 34 原核生物基因表达调控-操纵子模型,示例 35 真核生物基因表达调控(概述) 36 转录水平的调控,转录因子 37 转录后水平的表达调控(从细胞核输出,mRNA退化,非
利什曼病是一种媒介传播疾病,由利什曼原虫属感染引起,利什曼原虫是专性细胞内原虫寄生虫。目前,人类疫苗尚不可用,主要治疗严重依赖全身用药,这些药物通常配方不理想且毒性很大,因此新药成为受疾病困扰的中低收入国家的高度优先事项,但由于利润率不高,大多数制药公司的议程中新药的优先级较低。需要新的方法来加速新药的发现或现有药物的重新定位。为了应对这一挑战,我们的研究旨在确定临床相关的利什曼原虫种之间共享的潜在蛋白质靶点。我们采用了减法蛋白质组学和比较基因组学方法,整合高通量多组学数据,根据不同的药物可药性指标对这些靶点进行分类。这项工作对 14 种致病性利什曼原虫种的 6502 个蛋白质靶点直系同源组进行了排名。在排名前 20 位的组中,已知具有吸引力药物靶标的代谢过程被重新发现,包括泛素化途径、氨酰基-tRNA 合成酶和嘌呤合成。此外,我们还发现了新的有希望的靶标,例如烟酸磷酸核糖转移酶和二氢硫辛酰胺琥珀酰转移酶。这些组表现出有吸引力的药物特性,包括与人类宿主蛋白质组的序列同一性小于 40%、预测的必要性、结构分类为高度药物化或药物化,以及在无鞭毛体形式中的表达水平高于第 50 个百分位。这项工作中提供的资源还代表了有关锥虫生物学的综合数据集合。
[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。